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The Synthesis of Expanded Electron Beam (Inner Problem)
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Abstract – The method of formation calculation of
intense e-beam emitted by flat cathode at ρ-regime
is considered. The near-cathode are is investigated
in antiparaxial approximation. The e-beam be-
havior in the zone of acceleration is described by
the paraxial equations. The obtained solutions are
linked at the border of the areas by the axial dis-
tributions of the potential, charge density and by
the beam envelope. The calculation example is pre-
sented demonstrating the methods capabilities and
allowing to describe the flow by the simple analyti-
cal expressions.

Introduction

The calculation of electron beam and its focusing
system is a really difficult problem. There are a num-
ber of problems in this area that can be solved exactly
[1, 2]. That is why the approximating methods of
analysis became widely known: paraxial approxima-
tion for description of thin beams with low transversal
heterogeneities and near surface method of synthesis
(also called antiparaxial) for investigation of peculi-
arities in the near-emitter zone.

The conditions for application of both approxima-
tion methods are realized, for example, during the for-
mation and acceleration of e-beam in the gun operat-
ing at the regime of current limitation by the electrons
spatial charge (so called ρ-regime). The e-beam can be
described by the near-surface analysis method at the
near-cathode area because this zone is characterized
by the high charge density and remarkable transversal
heterogeneities. The e-beam is well described by the
paraxial equations far away from the cathode.

The possibility of such combined description of
axially symmetric e-beam generated by the flat cath-
ode at ρ-regime is investigated in this paper. The con-
ditions for the solutions linking at the paraxial ap-
proximation and near surface analysis areas bounds
are determined. The problem with the analytical e-
beam description is considered as an example.

Paraxial Approximation

Paraxial equation for axially symmetric beam is given
by [3, 4]:
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where the member at the right part of the equation
describes the spatial charge influence.

Here ϕ is an electric potential at the beam axis; r –
radial coordinate; e, m – electron charge and mass; I –
beam current, and dash means the longitudinal coordi-
nate z derivative. Usually the ϕ(z) distribution is
known and the dependence r(z) is to be found out
given the r0 and r0′ at some z = z0. The inverse prob-
lem is also possible – to find ϕ = ϕ(z) function pro-
viding required r = r(z) dependence. Either r0 and r0′
or r0 and ϕ0 can be set in this case.

In electron guns the potential ϕ is usually a unique
function of z. That is why it is possible to look for
solution of eq. (1) in form of r(z) = r [ϕ(z)] = r(ϕ).
Considering that r′ = ϕ′dr/dϕ, r″ = ϕ″dr/dϕ = ϕ′2d2r/dϕ2

and bringing in the symbol:
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we can write (1) in a form of:
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Let us consider two cases.

Case I. ϕdr/dϕ + r/4 = 0 (or r ∼ ϕ1/4)
Then the solution of (2) is given by:

ϕ = (C1z + C2); (3)
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where C1 and C2 are constants of integration defined
by the condition z = z0.

The obtained form of the relations excludes their
applicability near the cathodes operating at ρ-regime.
Indeed, given z = 0 the conditions ϕ = 0 and ϕ′ = 0
are executed at C2 = 0. But at these conditions r0→∞
and r0′→∞ that has no physical meaning. Nevertheless
the solution (4), (3) can be realized for inner problem
far away from the cathode.

Case II. ϕdr/dϕ + r/4 ≠ 0
Let us bring in symbols
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and rewrite (2) in the form of

ϕ″ + F(ϕ) – G(ϕ) = 0. (6)

This equation has the following solution:
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where ( ) exp ( )g F d ′ ′ϕ = ϕ ϕ  ∫ , C1 and C2 means the

same as before.
In spite of complicated form, the formula (7) al-

lows us to find the consistent solutions of eq. (1).
They are called “consistent” because of necessity of
preliminary assumption of the dependence r = r(ϕ)
form. The F(ϕ) and G(ϕ) are determined from (5) in
this case. The solution ϕ(z) is found from the integra-
tion of (7). And r = r[ϕ(z)] = r(z) dependence is found
next.

Let us consider the dependence

r = r0(ϕ/ϕ0) 
p, p = const, (8)

where the accomplishment of r = r0 and ϕ = ϕ0 given
z = z0 is already considered.

Then

F = p(p – 1/2)/ϕ (p + 1/4);
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The expression (7) is integrated “completely”, for
example by p = –0,08856, and the solution is given as:
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Apparently this solution can be applied only at suf-
ficient remoteness from the cathode.

Near Surface Analyses

Hydrodynamic model of intense electron flow in the
absence of magnetic field and under assumption of its
regularity is described by the system [1]:

rot (v) = 0, dv/dt = grad(ϕ), div(ρv) = 0, ρ = ∆ϕ, (10)

where a number of constants are omitted for the sim-
plification (particle charge and mass (e, m), dielectric
constant ε0).

Let us bring in the movement potential S, defined as:

V = grad(S). (11)

The system (10) allows looking for solution in the
neighborhoods of flat equipotent cathode operating at
ρ-regime in form of following rows:
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Here fi = fi(r), i = 1, 2, 3 are functions of radial coordi-
nates. In fact, the form of dependence f1(r) determines
the beam parameters, because it uniquely defines the
form of functions f2(r), f3(r). The substitution of f1(r)
into (12) gives:
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Every following fi(r) is evaluated by fi – 1(r), fi–2(r)…
They forms become more bulky with i growth.
Knowledge of f1(r) and f2(r) is enough for the descrip-
tion of the near surface area. Knowledge of f3(r) can
be used for the determination of area extension where
the neglect of other expansion terms is true.

The following e-beam parameters can be deter-
mined with the help of  fi(r):

– potential distribution:
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– density:

2

2
21

1 1 2 1 12 / 3

4 / 3 21 1
1 2 2

2
1 3 1 1 1 1 2

1 10 / 31 1 1 2
1 2

50 20 3850 25(
81 3 81 9

25 106 12584) (
9 3 81
17680 55

81 9
55 55 55 ) ,
9 9 9

f f f f f f
z

f f z f f f
r

f f f f f f f

f ff f f ff f z
r r r

′ ′′ρ = + + + +

′
′ ′+ + +

′′ ′ ′′′ ′′+ + + + +

′ ′′ ′
′′+ + + + (16)

– and envelope:
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with initial condition that r = r0 given z = 0.
The linking of solutions obtained in paraxial and

antiparaxial approximations consists in e-beam pa-
rameters aligning in some point with coordinate z = z0.
This point position (which is by the way calculates
itself) should satisfy following conditions: 1) the con-
dition of near surface analysis application (i.e. the
neglect of expansion terms born by f3(r) and propor-
tional to z4) is true; 2) the e-beam potential, density,
envelope and its tangent to the axis r0′ should coincide
for both approximations.

Let us explain written before on example of con-
verging e-beam formation emitted by the flat cathode.

Electron Beam Calculation

Let us consider the problem allowing the obtaining of
final solution in form of relatively simple analytical
expressions. Let us choose the solution for the parax-
ial equation in form of:

φ = b(z + D)2; (18)

ρ = β(z + D)–0,5; (19)

where β, b and D are some constants.
The charge density in such e-beam is constant and

equal to

ρ = 2b, (20)

and the envelope tangent changes as

r′ = –β(z + D)–3/2/2. (21)

For the description of the near-surface area let us
choose as f1 the expression corresponding to the e-
beam emitted by the flat cathode perpendicular to the
surface and experiencing focusing by the static electric
field (the magnetic field is absent):

f1(r) = (1 – r2/a2)2,  (22)

here a is the e-beam transversal heterogeneity pa-
rameter. From (13) and (14) we find:
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Substituting  f1,  f2,  f3  into (15), (16), (17) we find:
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Following calculations are carried out assuming
that transversal heterogeneity is small enough, i.e. that
difference between the current density at the cathode
edge and center is less then 30%. In other words, fol-
lowing conditions are have to be fulfilled given that
z = 0:
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Under made assumptions from (15)–(17) we can
find main distributions:
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Comparing (26)–(28) with (18)–(21) we can find:
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So in near-cathode area (z < z0) the e-beam pa-
rameters are described by the expressions (26)–(28)
with constants (29), and with z > z0
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The e-beam envelope main axial distributions of
potential and density are represented in Figs. 1–3.

Fig. 1. E-beam envelope

Fig. 2. E-beam potential distribution

Fig. 3. E-beam spatial charge density distribution

Conclusion

The method of formation calculation of intense e-
beam emitted by flat cathode at ρ-regime is consid-
ered. The near-cathode is investigated in antiparaxial
approximation. The e-beam behavior in the zone of
acceleration is described by the paraxial equations.
The obtained solutions are linked at the border of the
areas by the axial distributions of the potential, charge
density and by the beam envelope. The calculation
example is presented demonstrating the methods ca-
pabilities and allowing to describe the flow by the
simple analytical expressions.
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