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Abstract – The dependence of the virtual cathode
velocity V on the current of the injected electron
beam and on the current beyond virtual cathode
have been determined by going from a coordinate
system K where the virtual cathode is immobile
and for which the steady states are known to a sys-
tem K ′ which move with the same velocity as the
virtual cathode. In so doing, use was made of Lor-
entz’s transformations for the strengths of electric
and magnetic fields and a maximum virtual cath-
ode velocity has thus been found. Theoretical re-
sults agree with data obtained by numerical simu-
lation.

1. Introduction

In [1–3] numerical calculations have shown that in
certain conditions of electron beam injection into a
two-stage drift channel a virtual cathode (VC) is
formed near the stage joint. As the injection current
approaches its critical value, the virtual cathode starts
moving toward the injected electron beam, leaving
behind it a pinched unidirectional flow [1–3]. One can
use this phenomenon, e.g., for collective accelerations
of ions [4]. In so doing, the energy of the ion bunch
trapped by the potential well is determined by the VC
velocity. In this work we examine the problem on the
virtual cathode velocity in a drift channel with R1 = R2.

2. Theory

In [5] the problem on the transportation of a tubular
electron beam in a drift tube under steady-state condi-
tion was solved for the case of an immovable virtual
cathode (the inertial coordinate system K). To find a
solution for a movable VC let us pass on to an inertial
system K′ which moves rightward along the drift tube
with a velocity V. With our configuration of the mag-
netic field (a uniform leading external magnetic field
and an azimuthal self-magnetic field of the electron
beam which is uniform along the drift channel), the
virtual cathode in the system K′ will then move left-
ward with a velocity V. With the radial component of
the magnetic field, there is no point in going to the
inertial system K′, since the tangential component of
the electric field strength therewith appears in the drift
tube.

Let there be a tubular beam of radius Rb, electron
velocity ν, and current I in the inertial system K

(Fig. 1). Then, the electric field strength at the external
beam boundary
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Fig. 1. Schematic of the drift channel with a tubular electron
beam: Ra – tube radius, Rb – beam radius; I1, I2, I3 – the cur-
rent of the beam behind the VC, the injection current, and
the current of the beam reflected from the VC (system K,

the VC is in the plane В)

In the inertial system K′, which moves along the z-
axis with an absolute velocity V, the Lorentz trans-
formations for the electric and magnetic filed strengths
have the form [6]
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where 2 21 1 V c′γ = −  is a relativistic factor which
corresponds to the velocity V of the system K′, the
upper index stands for the motion of the system K′ in
the same direction as the beam particles and the lower
index for that in opposition to them.
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According to (2),
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In the system K′ we will have the currents
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instead of I1, I2, I3 (Fig. 1). Using the relativistic law
of velocity summation, the relativistic factors for the
beams in the system K′ are easily obtainable

2 2
1 1 11 1′γ = γγ γ − γ −m ,

2 2
2 2 21 1′γ = γγ γ − γ −m ,  (7)

2 2
3 2 21 1′γ = γγ ± γ − γ − .

With a knowledge of relativistic factors γ′ (7) and
electric field strength (1), the applied voltages (Γ′) for
beams 1, 2, 3 in the system K′ are calculated
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The formulae and the values of currents and rela-
tivistic factors obtained for the standard states of an
electron beam with an immovable virtual cathode pro-
vide a possibility of completely solving the problem
with a moving VC. In a formal way, the derived solu-
tions hold true for any VC velocity lower than the
velocity of light. However, to each voltage of the drift
tube there corresponds its own limiting VC velocity.

3. Results

Let us determine the maximum velocity max
LV  of the

VC moving leftward, assuming that this velocity can
not higher than that of the electron beam behind the
VC. At high values of the VC velocity, the particles
change their direction that comes in conflict with the
conditions of the initial problem. In the system K the
beam which has passed through the VC is on the left
branch of the transportation curve [5], and therefore its
velocity ranges from zero to a value corresponding to
the relativistic factor 1 3

1γ = Γ . Hence, the maximum

velocity of the VC moving leftward max
LV  corresponds

to 1 3
1γ = Γ , i.e., to the case where the beam passes

through the VC without reflection. In this limiting
case, the beam in the system K′ stops. In so doing,

2 3
2′Γ = Γ . But 2′Γ  is the relativistic factor which cor-

responds to the applied voltage in the system K′. Con-
sequently, 1 3

max 2
L ′γ = Γ = Γ  and
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For the motion of the VC rightward, we will as-
sume that the reflected beam travels to the left and at

max
RV  it stops. Then, from (7) we have max 2max

Rγ = γ ,
because in the system К the injected and reflected
beams have equal values of γ. ever, 2max Fγ = γ , and
from (8) we obtain

2
2 1F F′Γ = γ + Γγ − , (10)

where 2 1 4 1 2Fγ = Γ + − .
These relations determine the limiting velocity of

the VC moving rightward ( )max 2
R f ′γ = Γ . Unfortu-

nately, this velocity has to be calculated only numeri-
cally (Fig. 2).
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Fig. 2. Limiting velocities of the VC moving leftward (1)

and rightward (2) versus the drift tube voltage Γ

In the general case, the VC velocity γ depends on
many parameters. Fig. 2 shows γ versus the injection
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current 2I ′  at a constant current 1I ′  of the beam behind
the VC for 2 2, a bR R′Γ = = = ,. This dependence
has been calculated by formulae (6–8). It can be seen
from this figure that at the specified current 1I ′  the
dependence 2( )I ′γ  has two branches: a “slow” branch
with low VC velocities at 2 2maxTrI I I′ ′< <  and a
“rapid” one which is described by the upper branch
at 2max 2 1I I I′ ′ ′< < . For high injection currents
( 2 2maxTrI I I′ ′< < ), both solutions are possible, whereas
for low injection currents ( 1 2 TrI I I′ ′< < ) only those
described by the “rapid” branch. At injection currents
higher than the maximum one 2 2maxI I′ ′> , no steady-
state of the beam with a constant VC velocity is re-
vealed.

Analysis has shown that the conditions appropriate
to the “slow” branch can be realized if the magnetized
beam is injected to a narrow section of the two-stage
tube from one side. As demonstrated in [3], in this
case for every value of the current behind the VC
there is a critical value of the injection current ITr (the
transition current), at which the VC starts to move to
the plane of the beam injection. The values of these
currents correspond to the points of intersection of the
curves, which describe the “slow” branch, and the

2I ′ axis. For instance, for 1 0I ′ =  the curve intersects
the x-axis at the point 2 2Tr FI I I′ = =  that corre-
sponds to the minimum value of the transition current
and at its maximum values 1 1limI I′ =  this dependence
degenerates into a point.

Note that the point of intersection of this curve
with the z-axis corresponds to the limiting velocity of
the VC moving leftward to the injection region

2 2
lim lim1 1 ( )LV cγ = − , where lim

LV  is determined by
formula (9) that supports the above assumption that
the limiting value of the VC velocity is equal to the
electron velocity of the beam behind the VC.

Figure 3 shows the values of VC velocities deter-
mined in simulating the electron beam injection into a
two-stage tube by the КАРАТ code [7]. It can be seen
in this figure that these values (even to the point of the
VC velocities γm which correspond to the maximum
injection current 2 2maxI I′ ′= ) find a rather good agree-
ment with the results of calculations by the formulae
derived in this work.

In this work we have not investigated the condi-
tions and patterns of electron beam injection which

allows practical realization of the modes of the VC
motion described by the “rapid” branch of its 2I ′  de-
pendence. This does not, however, exclude the possi-
bility of realizing them, e.g., with the use of many-
sided injection patterns or patterns of electron injec-
tion into a drift channel through the lateral surface.
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Fig. 3. VC velocities versus the current ratio for Γ = 2;
R1 = 1 cm; Rb = 0.61 cm. 1I ′ = 0, 1, 3, 5, 7 kA – curve 1,
2, 3, 4, 5, respectively. Dots indicate the results of calcula-
tions by the PIC code KARAT: □ – for the beam cur-
rent behind the VC 1I ′ = 3 kA, ∆ – for 1I ′ = 5 kA. 
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