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Abstract – Results of theoretical study of nonlinear
dynamics in a model of scattron free electron laser
(FEL) amplifier based on the induced backscat-
tering of two transversal electromagnetic waves on
a relativistic electron beam are considered. Effect
of self-modulation of output radiation is studied
numerically. The increase of either input power or
beam current results in complication of self-
modulation regime and arising of quasi-periodic or
even chaotic oscillations. Basic properties of single-
frequency, multi-frequency (self-modulational) and
chaotic regimes are discussed. A bifurcation map
on the parameter plane is presented.

1. Introduction and Basic Equations

Free electron lasers (FELs) have the potential of pro-
viding very high-power, continuously tunable, coher-
ent radiation over an extensive range of wavelengths
[1], and are currently the subject of intensive research
effort. Usually FELs utilize periodic magnetostatic
undulator and strongly relativistic electron beam to
obtain high frequency up-conversion. However, high-
power radiation may be obtained using moderately
relativistic electron beams and electromagnetic wave
pumping (scattron FEL). This may result in develop-
ment of compact sources of THz radiation. For exam-
ple, using a powerful millimeter wave generator as a
pump source one needs about 10 times frequency con-
version to obtain output radiation with teraherz fre-
quencies. For this, beam voltage about 300 kV is re-
quired.

In this paper, we study nonlinear behavior of a
FEL amplifier with electromagnetic pumping being
focused on the nonstationary behavior. We consider
the parametric interaction of a signal with frequency
ωs with slow space charge wave with frequency
ωi = ωs – ωp and the counter-propagating electromag-
netic pump wave with frequency ωp. We are investi-
gating the case of a moderately relativistic electron
beam (γ0 ≤ 2), nevertheless providing sufficient fre-
quency conversion. Our analysis is based on the non-
linear theory that has been developed earlier in [2–4].
In the dimensionless form the nonstationary equations
are
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where Fs and Fp are slowly varying amplitudes
of the signal and pump waves, respectively;
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π ∫I i d  is the amplitude of the first har-

monic of bunched current; θ is the phase of the elec-
trons, θ0 – initial phase; ξ and τ are normalized coor-
dinate and time, respectively; 0v  is the beam velocity.
In the equations (1)–(3) there are three dimensionless
parameters: the normalized length of the system L,
relativistic mass-factor γ0, and the parameter of pump
depletion ε [4]. The pump wave is propagating counter
to the electron beam and the signal wave.

The boundary conditions in the case of the ampli-
fier are

( )0, 0τ =I , ( )0, 0ξ τ =I ,

( ) ( )00, expτ = ΩτsF F i , ( )1, 1τ =pF , (4)

where F0 is the input signal amplitude and Ω is the
normalized frequency shift from the exact parametric
resonance frequency, ωs.

Note, that in the limit ε → 0 the eqs. (1)–(4) are
equivalent to those describing a delayed feedback
traveling wave tube (TWT) oscillator [5]. Eq. (1) de-
scribes motion of the electrons and is usually solved
by Lagrange macro particles method [6]. In the theory
of most vacuum electron devices such as TWT or
BWO there exists an efficient technique allowing con-
sidering only the electrons that fit within one wave
period (usually 32–64 items). However, this is possi-
ble only if electron velocity exceeds the group veloc-
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ity of the signal. In our case, the interacting waves are
fast waves with vg = c, so the mentioned above ap-
proximation fails that leads to substantial complication
of the numerical method.

2. Nonlinear Wave Model of a FEL Amplifier

In this section we consider a simplified model in the
assumption that electron beam nonlinearity is weak,
and the only significant nonlinear effect is the pump
depletion. Thus, after linearization of (1) we obtain the
system of nonlinear wave equations
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where Fi is the normalized amplitude of the slow
space-charge wave. Now only two control parameters,
L and γ0, remain in (4)–(6). The boundary conditions
for the amplifier are
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where F0 and Ω  are amplitude and frequency of the
input signal. The eqs. (5)–(7) were solved by an ex-
plicit finite-difference method of second order accu-
racy in space and time.

Fig. 1. The output signal amplitude as a function of fre-
quency at γ0 = 1.3, L = 4 and various amplitudes of the input
signal: F0 = 0.01 (1), 0.05 (2), 0.1 (3), 0.2 (4), 0.3 (5).
      Dashed line corresponds to a self-modulation regime

Equations (5)–(8) allow taking into account fre-
quency dependence of the FEL gain. In Fig. 1 we pre-
sent an example of frequency response of output sig-
nal amplitude for various input signal amplitudes. One
can see that for large F0 self-modulation arises near
Ω = –1.5π shown by dashed line on the curve (5). The

physical origin of self-modulation in the FEL ampli-
fier is the parasitic feedback that takes place due to
counter propagation of the pump wave [3, 4].

With the enlargement of γ0 the threshold of self-
modulation goes down. This can be explained as fol-
lows. The amplifier’s bandwidth is determined by the
ratio of the beam velocity v0 to the signal velocity
(that is assumed equal to the speed of light). The
larger is γ0 the wider is the bandwidth. Therefore, the
gain at the self-modulation frequency increases.

Fig. 2. (a) Spatial distributions of the wave amplitudes; (b)
spectral intensities of the input signal (1) and the satellite
                 (2); γ0 = 1.8, L = 5.5, Ω = –π, F0 = 0.5

The region of self-modulation proves to be limited
and with further enlargement of either L or F0 the out-
put signal becomes nearly single-frequency again.
However, in the spectrum of the output signal the
parasitic satellite dominates, not the input signal,
which is almost completely suppressed. In Fig. 2(a)
the distributions of the wave amplitudes along the
system are presented. One can observe a domain
where the signal is suppressed due to pump depletion,
and the domain of rapid growth of the signal near the
output. But this is the growth of the satellite, not of the
input signal. This is confirmed by Fig. 2(b) where
spectral intensities are plotted. The variables Fs, i, p are
almost time-independent, however in the region where
the intensities of the satellite and the input signal are
close (ξ ∼ 0.7–0.8), small oscillations are observed.

The overall picture is illustrated by a map of dy-
namic regimes on the plane of parameters F0 and L
shown in Fig. 3. In this figure, the boundaries of self-
modulation regime and the regime of nearly single
frequency with the parasitic satellite being dominant
are depicted.
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Fig. 3. The map of dynamic regimes on the plane of control
parameters at γ0 = 1.8, Ω = –π, S is the stationary amplifica-
tion regime, SM corresponds to self-modulation, SM1
is nearly single frequency regime with parasitic satellite
                                   being dominant

3. Nonliear Dynamics of the FEL-Amplifier
Considering Electron Beam Nonlinearity

Subsequently we studied a more complicated model of
FEL amplifier (1)–(4) that takes into account electron
overbunching effects. This required substantial com-
plication of the numerical method to solve the equa-
tions of motion (1). At each point of the spatial grid
we placed 32 or 64 “Lagrange particles” to be able to
calculate the current harmonic I. Since the number or
grid nodes is about 100–200, the total number of elec-
trons is of order of several thousands. In comparison,
in the theory of TWT or BWO, we should follow the
motion of only 32–64 electrons.

In general, the results are qualitatively similar to
those predicted by the model described in Sec. II. As
an example, the gain–frequency response is presented
in Fig. 4. However, self-modulation arises in that sys-
tem for larger values of the input signal (cf. Fig. 1).
Simulations show that with the enlargement of γ0 as
well as with the enlargement of pump depletion pa-
rameter ε the threshold of self-modulation goes down.

However, with the increase of the length parameter
L more complicated dynamics is observed, including
quasiperiodic and chaotic self-modulation. Thus,
electron nonlinearity is vital for chaos. In Fig. 5 the
map of dynamic regimes is presented. The quasi-
periodic region proves to be narrow. Increasing of the
bifurcation parameter results in quasi-periodic route to
chaos.

Further behavior of the system may be different,
depending on F0. For not too large F0 (F0 < 0.7 for the
case presented in Fig. 5), after the chaotic regime pe-
riodic self-modulation is restored with the input signal
being almost completely suppressed. The situation is
similar to that described in Sec. II (cf. Fig. 3). Note
that the transition from chaos to the regular self-
modulation occurs via intermittency.

Then one more quasiperiodic transition to chaos
takes place. Now the dominating frequency is that of
the parasitic satellite. Examples of phase portraits and
power spectra illustrating that transition are presented
in Fig. 6. In the spectrum of the output signal the para-
sitic satellite dominates, not the input signal, which is
almost completely suppressed.

Fig. 4. The amplifier’s output signal amplitude as a function
of frequency at γ0 = 1.3, L = 4, ε = 2.5  and various ampli-
tudes of the input signal: F0 = 0.01 (1), 0.05 (2), 0.1 (3),
0.2 (4), 0.3 (5), 0.4 (6). Dashed line corresponds to a self-
                                  modulation regime

Fig. 5. The map of dynamic regimes on the plane of control
parameters (γ0 = 1.8, Ω = –π, ε = 0.4): S – stationary ampli-
fication regime, SM – periodic self-modulation, Q – quasi-
periodic self-modulation, Ch – chaos. The same designa-
tions with prefix “1” correspond to the regimes with para-
                          sitic satellite being dominant

For F0 > 0.7 there are no quasi-periodic and cha-
otic regimes based on the input signal frequency. In
the domain of periodic self-modulation, smooth tran-
sition from the regime based on the input frequency to
that based on the satellite frequency takes place. Then
quasi-periodic route to chaos, similar to that presented
in Fig. 6, is observed.
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Fig. 6. Phase portraits and power spectra of the output signal
at γ0 = 1.8, Ω = –π, F0 = 0.5, in the quasi-periodic regime Q1,
L = 13.2 (a) and in the chaotic regime Ch1, L = 13.5 (b).
Note that main frequency in the spectrum differs from
                            that of the input signal

4. Conclusion

Nonlinear dynamics of a scattron FEL amplifier based
on the induced backscattering of two transversal elec-
tromagnetic waves on a relativistic electron beam is
studied in detail. Two basic models are studied. The
first one is based on the nonlinear wave equations
obtained in the assumption that electron overbunching
effects are negligible. The second is based on more
rigorous equations taking into account electron non-
linearity. The main attention is paid to the effect of
self-modulation of the output radiation. For the second
model, with the increase of the control parameters
more complicated quasi-periodic or even chaotic os-
cillations are possible. Transition to chaos occurs via a
quasi-periodic route.
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