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Local Oscillation Stability in Magnetron with Coupled Cavities
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Abstract – In this report a self-oscillatory model of
a magnetron with coupled cavities is presented. In
magnetron’s resonance system two oscillatory sub-
systems are distinguished that interact with each
other through internal and external circuits. Phe-
nomenological description of subsystems’ synchro-
nous interaction is given. The influence of coupling
on local stability of coherent oscillations is re-
searched.

1. Introduction
Resonance systems of many electrovacuum generating
microwave devices of microwave band are complex
electrodynamic systems, which are characterized with
eigen oscillation types referred to as modes. These
modes differ by field distribution in the resonance
system, and their frequency spectrum can be quite
dense. This causes instability of microwave radiation,
as well as of transitions between competing oscillation
modes, frequency jumps and power surges. This
problem is especially typical for pulse devices, in-
cluding high power relativistic generators [1, 2]. There
are methods of modes separation, aimed at oscillating
systems’ modification with the purpose of diluting the
eigenfrequency spectrum [3, 4].

The subject of this report is a self-oscillatory
model of a magnetron with coupled cavities. The in-
fluence of coupling on local stability of coherent os-
cillations is researched.

2. Self-Oscillatory Model of a Two-Output
Magnetron
In certain cases, the mechanism of energy transmis-
sion into electromagnetic oscillations allows certain
degree of localization for these processes in the inter-
action space. In resonance systems of such devices, it
is possible to distinguish the elements of one electro-
dynamic process. In fact, the eigenfrequency spectrum
corresponds to certain radio-frequency field’s distri-
bution and describes electrodynamic configuration of
the resonance system. Knowing these fields and their
space symmetry in advance it is possible to construct
by decomposition a multipole generator model. As the
system possesses resonance properties at the marked
poles end, and as it is regenerated, it is presented as a
system of mutual coupled oscillators. In turn, it is
known that existence and stability of coherent oscilla-
tions in the systems of mutual coupled oscillators de-
pend mainly on the mutual couplings configuration

and their behavior. These issues are researched in the
theory and practice of coherent systems [5–7].

Based on physics analogy, it is possible to insert
“internal” mutual couplings between oscillating com-
ponents, which model a real mechanism of oscillation
stability. “External” mutual couplings can be intro-
duced into the system in a similar manner. Unlike the
internal ones, they are presented by real circuits.

Thus, we suppose that on the basis of the above
statements and using azimuthal symmetry of magne-
tron fields, it is possible to distinguish a some pair of
poles of the resonance system. Then the generator can
be presented as on Fig. 1.

                             Resonance system
            1                                                              2

  YL1      U1         y1(jω)       I1    I2       y2(jω)          U2       YL2

            1                                                              2
Fig. 1. Circuit of generator

Complex conductivity yk(jω) describe the proper-
ties of the oscillating system at poles 1 and 2, and
resonance frequencies defined by them correspond to
the oscillation mode. Conductivity YLk in relation to
the oscillating system are external, and they load it.
We suppose that loaded resonance system on the fre-
quency operating mode oscillations is characterized
with relatively high selective properties. That is why
almost harmonic oscillating process with ω0 frequency
builds up in this system; this process is described at
terminals 1 and 2 by slowly changing complex voltage
amplitudes

( ) ( ) , 1, 2kj t
k kU t e kϕ= =U . (1)

Resonance system sections marked on the scheme
(further on referred to as oscillating subsystems) are
powered by induced currents. We suppose that only
first current harmonics participate in the oscillating
process. They are described by complex amplitudes Ik.
Phase difference takes place between the induced cur-
rents and voltages, that is why

( ) ( )kj tre im
k k kI jI e ϕ= − +I . (2)

Then system’s differential equations can be pre-
sented in a symbolic form



High power microwaves

274

( ) ( ) ( ) 0,k k
dt D p t p
dt

+ = =I U . (3)

According to the formal description of the slowly
changing amplitudes method in its symbolic interpre-
tation [5], the symbolic impedance D(p) can be pre-
sented in approximated (abridged) form

( ) ( )02 2k Lk k k kD p Y j C C p= + ω −ω + ,  (4)

where 
( )( )

0

Im1
2

k
k

d Y j
C

d ω

ω
=

ω
. Ck parameters are

proportionate to slope of phase characteristics of sub-
systems and analogous to tank circuit capacitance.
Frequency properties YLk are paid no regard to.

The distinguished oscillating subsystems are non-
autonomous, they are parts of initial generating system
and are interconnected through an electron flow. It
means that the currents in (3) depend on all variables:
amplitudes Uk and phases φk. As seen from (4), the
model allows differences in resonance frequencies ωk
of the subsystems due to certain asymmetry of gen-
erator’s oscillating configuration in relation to poles 1
and 2. Thus, the differential equations (3) describe
coherent processes in the generator, presenting it as a
system with two degrees of freedom.

3. Nonlinear Properties of the Model

When researching local motion as part of self-
oscillatory systems’ steady-state conditions problem,
it is essential to perform linearization of the initial
nonlinear differential equations. That is why it is nec-
essary to determine functional relationships Ik(U1, U2,
φ1, φ2), which reflect the connection of oscillations by
means of the interaction between electromagnetic field
and electron flow. We will construct the functions Ik,
basing on self-oscillating systems’ common proper-
ties; phenomenological approach will be used. In-
phase component of the current re

kI  with voltage Uk

determines the power supplied to the field by the
electron stream. Limiting properties of the system are
defined by the function ( )re

k kI U . Quadrature compo-
nent causes the detuning of the oscillation frequency
in relation to resonance frequency. Dephasing of cur-
rent and voltage oscillations (i.e. 0im

kI ≠ ) leads to
processes’ non-isochronism, which should be reflected
by the functional relationship ( )im

k kI U . Also, it should
be taken into account that as a result of oscillating
components interaction a mechanism for detention of
stationary difference in phases ∆φ0 = φ20 – φ10 is
formed in the system. In this regard one can affirm
that optimal interaction takes place in a well phased
system. If for some reason phase difference distur-
bance occurs in the system, the amplitudes of self-
oscillations should be changed, as well as coherent
process frequency. The above stated implies that

phase difference ∆φ = φ2 – φ1 should be included in
the parameters list of functions of the current.

Let us rewrite the abridged differential equations
(3):

( )
( )0

, ,

2 2 0

1, 2; ,

k k l k l Lk

k k k k

Y U U Y

C C p

k l k

ϕ −ϕ + +
+ ω −ω + =
= ≠

U , (5)

where ( )0k
k k k k

k
Y G jB G= = − + >

I
U

 – complex con-

ductance of active elements.
With the purpose of further formalization of the

model (5) we will subject it to a permutation symme-
try requirement, i.e. assume that the oscillating sub-
systems in question are characterized with qualitative
identity. Then the assumption related to quantitative
identity of linear and nonlinear parameters of subsys-
tems offers us an optimal variant of adjustment and
phasing: ∆φ0 = φ20 – φ10 = 0, U1 = U2, ω0 = ω1 = ω2,
Bk(∆φ0 = 0) = 0.

On the basis of this ideal variant let us determine
the functional relationships profiles Bk(∆φ), Gk(∆φ).
Steady-state equations (assuming that p = 0 in (5))
imply that the Bk functions are functions with alter-
nating signs in terms of ∆φ. On the other hand, devia-
tion of the phase difference from its optimal value
∆φ0=0 is equivalent to the disturbance of field in the
interaction space. This deteriorates the energy ex-
change with electron flow and decreases the regenera-
tion degree. That is why functional relationship
Gk(∆φ) is presented as an even function with a maxi-
mum when ∆φ0 = 0.

Negative slope of the functional relationship
Gk(Uk) is obvious. It is determined by the limiting
factors of the active environment, which is usually
considered executed by default in oscillation tasks.

The function Gk(Ul) (l ≠ k) is characterized with a
reverse and smaller slope. It is proven on account of
steady-state stability under amplitude disturbance.
Finally, the profiles Bk(Uk, Ul) define the direction of
the gain-phase conversion, i.e. influence of the am-
plitudes on synchronous oscillations frequency ω0. At
this point it is natural to assume that under the force
(non-parametric) interaction the frequency is pulled by
more powerful self-oscillations. Application of the
permutation symmetry provides the desired profiles.

The nonlinear model of a coherent system with
two degrees of freedom presented in this report is
qualitative. However, universal properties of self-
oscillatory properties were used in the process of its
construction.

4. Local Stability

As part of the local stability research we applied a
standard procedure for differential equations lineari-
zation (5) and further substitution of solutions of
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( )* expka tδ λ  type. As a result we got a system of al-

gebraic equations for amplitude *
kaδ  and phase *

kδϕ
disturbance:

*
1
*
2
*
1
*
2

2

2
0

2

2

re re re
U

re re re
U

im im im im
U U
im im im im
U U

C a
C a

C

C

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

   λ+σ −σ −σ σ δ
   
−σ λ+σ −σ σ δ   

× =   σ −σ λ+σ −σ δϕ   
   σ −σ −σ λ+σ δϕ    

(6)

The coefficients of the matrix result from lineari-
zation of nonlinear functions Gk (index re) and Bk (in-
dex im), and their signature corresponds to nonlinear
properties of the model for ∆φ0 > 0. For ∆φ0 < 0 the
signs before the coefficients re

ϕσ  and im
Uσ  should be

changed to opposite. Compatibility condition for the
system of equations (6) provides characteristic equa-
tion det [A(λ)] = 0, and its roots define the stationary
mode stability.

In the general case, oscillating subsystems are not
identical, and corresponding coefficients in the
equivalent matrix positions (6) differ in value. In the
assigned task the evaluation of assumptions in terms
of stability made while constructing the model is of
the greatest interest. That is why both variational
equations (6) and further analysis are limited by the
case of identity of all subsystem’s parameters except
frequencies (i.e. ω1 ≠ ω2, ∆φ0 ≠ 0).

As is well known, finding roots of a characteristic
equation and corresponding solution vectors make up
a full eigenvalue problem [8]. The eigenvalues de-
scribe the nature of local motion, and vectors – direc-
tions in the phase space. For systems whose charac-
teristic matrix possesses symmetry elements, it is
possible to change the normal order of solving the
problem and determine the eigenvectors first [6]. Af-
terwards the corresponding values can be found by a
simple substitution of vectors into the equations (6).
The simplications made allow applying this approach
to our problem. Let us copy out the eigenvectors and
eigenvalues:
1. * *

1 2 0a aδ = δ ≠ , * *
1 2 0δϕ = δϕ = , 12 0re

UÑλ = −σ +σ < ;

2. * *
1 2 0a aδ = δ = , * *

1 2 0δϕ = δϕ ≠ , 22 0Ñλ = ;

3. * *
1 2 0a aδ = δ ≠ , * *

1 2δϕ = −δϕ , 32 2 0imÑ ϕλ = − σ < ;

4. * *
1 2a aδ = −δ , * *

1 2 0δϕ = δϕ ≠ , 42 0re
UÑλ = −σ −σ < .

The solutions obtained have clear physical mean-
ing. The system is tested for stability of stationary
amplitudes by their identical disturbances (solution 1).
As seen, the condition mentioned above – re

Uσ > σ –
results from the stability requirement. If assumed that
the subsystems in question are not coupled ( 0re

Uσ ≡ ),
then the inequation 1 presented in this manner is

known as amplitude stability requirement for an iso-
lated generator, and coefficient 0 0U dG dUσ = − is
referred to as limiting cycle strength. According to the
solution 2, the system does not react to one-direction
phase disturbance, which reflects the initial phase un-
certainty characterized for generating systems. Stabil-
ity to reverse phase disturbances (solution 3) is prede-
fined by the properties of current functions describing
the interaction of model’s oscillating subsystems. Fi-
nally, the system remains stable under opposite am-
plitude disturbance.

Thus, the performed analysis proves that the self-
oscillating model of a magnetron constructed using
the phenomenological approach, adequately describes
the interaction of the distinguished subsystems for
stable coherent modes.

6. The System with External Coupling

Let us insert an external coupling by joining the
poles of subsystems 1 and 2 (Fig. 1) through a sym-
metrical passive four-pole. The abridged equations of
such model are obtained directly from (6), by replac-
ing YLk in them:

2
1 11 12

1
LY Y Y= +

U
U

,

1
2 22 21

2
LY Y Y= +

U
U

,

where 11 22Y Y= , 12 21 exp( )Y Y g j= = − α  (g > 0) – pa-
rameters of conductivity matrix of the four-pole. The g
parameter defines the external coupling value, and α –
its phase properties.

The new modified structure is analogous to the
system of two mutual coupled oscillators in terms of
physical and mathematical models. The mutual syn-
chronization theory shows that resistance coupling of
the first type (α = 0) is optimal for stability of oscilla-
tions similar to in-phase oscillations [5–7]. In practice
the selection of such coupling is performed by alter-
nating the phase parameter of the communication cir-
cuit; it is the most essential element of the adjustment
process of microwave range coherent systems.

In according to problem linearity, each element of
the new matrix is presented as a sum of components
describing internal and external coupling. As the
problem structure is analogous to (6), its solution for
eigenvalues can be written by analogy with the previ-
ous one.

1. If the system is tested with identical amplitude
disturbances ( * *

1 2 0a aδ = δ ≠ , * *
1 2 0δϕ = δϕ = ), then the

reaction of coupling under such motion is excluded,
and stability requirements 12 0re

UÑλ = −σ +σ <  fully
match the analogous ones for a system without exter-
nal coupling.
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2. The system does not react to identical phase
disturbances ( * *

1 2 0a aδ = δ = , * *
1 2 0δϕ = δϕ ≠ ) as well:

22 0Ñλ = .
The influence of the external coupling becomes

apparent when the system is disturbed in transversal
directions of the phase space that correspond to the
opposite variations of phases and amplitudes.

3. In case of stationary phase difference distur-
bance ( * *

1 2 0a aδ = δ ≠ , * *
1 2δϕ = −δϕ ) local stability is

characterized with a following requirement:

( )3 02 2 cos 0imÑ gϕλ = − σ + ∆ϕ < .

We can see that in case of resistance coupling of
the first type (α = 0), when Y12 = –g, the in-phase
mode or similar modes degree of stability increases.
Further the coupling of this kind will be referred to as
favorable. On the contrary, for resistance coupling of
the second type (α = π), when Y12 = +g (in this case the
sign before g should be changed to opposite), decrease
in stability is observed. In case of strong unfavorable
interaction the operating coherent mode can lose its
stability ( img ϕ> σ ).

The second type of resistance coupling is favorable
for the mode of antiphased (∆φ0 = π) or similar oscil-
lations.

4. Reciprocal amplitude disturbance ( * *
1 2a aδ = −δ ,

* *
1 2 0δϕ = δϕ ≠ ) is damped by the system by means of

both amplitude stability mechanism and external cou-
pling:

4 02 2 cos 0re
UÑ gλ = −σ −σ − ∆ϕ < .

Thus, we have showed that external coupling of
generators oscillating subsystems has a great impact on
local motion near to stationary state. The parameters of
external coupling channels g and α correspond to the
primary parameters of actual four-poles and have no
fundamental restrictions for their alteration. At the same
time in the course of experiment they are fully con-
trolled and can be adjusted quite accurately. The eigen-
values determine the disturbances’ relaxation rate,
therefore it can be affirmed that favorable external cou-
pling strengthens the internal (electronic) mechanism of
phase relations detention. Experimental research of
relativistic magnetron shows that introduction of exter-
nal couplings into its resonance system improves the
process of energy exchange and significantly increases
spectral and mode stability of oscillations [9, 10].

7. Conclusion

In this report a self-oscillatory model of a magnetron
with distinguished oscillating subsystems was pre-
sented. Using the phenomenological approach an ade-
quate description of subsystems’ interactions for sta-
ble coherent modes was given. For solving the
stability problem, an apparatus of full eigenvalue
problem was applied. In case of acceptable simplifi-
cation of the model it provides a full picture of local
motions and mechanism of interactions’ influence on
stability. It is shown that introducing external coupling
can increase the coherent processes’ degree of stabil-
ity. The theoretical model developed in the report can
be applied for modification of properties of micro-
wave range generating devices.
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