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Abstract – The interatomic potential for the case
when ionization took place was investigated for
aluminum as a sample. The Heine-Abarenkov-
Animalu model potential form factors was em-
ployed. The form factor parameters of ionized at-
oms was determined on the base of the quantum
defect method using the atomic-spectroscopy data.
The potential of interatomic interaction for differ-
ent charged states and the equation of the matter
states with different degree of ionization were de-
termined.

1. Introduction

It is known that intensive radiation generates ionized
atoms within the track of a fast charged particle as
well as near the solid surface. The potentials of inter-
actions between these atoms and surrounding particles
change considerably. The knowledge of corresponding
potentials of interatomic interaction is necessary for
studying the behavior of partially or entirely ionized
matter.

Therefore, aluminum was taken as an example
studying the interatomic potentials in metal containing
ionized states. Calculations were based on the method
of pseudopotentials using Heine-Abarenkov-Animalu
model potentials with parameters which were deter-
mined from spectroscopic terms of free ions following
the method of quantum defect.

2. Quantum Defect Method

The energetic levels Enl of a single electron in the area
of positive ions with the electron shells being similar
to the spherically symmetric electron shells of inert
gases, in particular Na+, Mg2+, Al3+, Si4+, P5+,S6+, Cl7+,
are known to satisfy the relation [1]:

( )22 / ,nl nl nlE Z n= − − δ + ∆ (1)

where Z is the ion-core charge, δnl and ∆nl denotes
quantum defects characterizing the |Ze|-charge in-
duced deviation of an atomic potential in such a con-
figuration of inert gas shells from a Coulomb ones.
Fig. 1 shows a linear dependence of the value of spec-
troscopic terms of the atomic series considered on a
square of the ion-core charge.

Using this empirical law we have determined the
mode potential parameters of the additionally ionized
cores with respect to the energies εnl = Enl – ∆nl, as it
was done for transition metals in [1].
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Fig. 1. Spectroscopic term values E3p as function
of the chemical valence

It turns out that there also are similar dependences
for additionally ionized cores (Fig. 2). Here the fol-
lowing series Na2+, Mg3+, Al4+, Si5+, P6+,S7+, Cl8+ will
be realized.
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Fig. 2. Spectroscopic term values E2p as function
of the ion-core charge

Radial wave equation with a model potential de-
scribing the electron motion is written as

2 2
1 ( 1) 1( ) ( ),
2 22 l

d l l v r r
dr r

+ − + + χ = εχ  
(2)

where χ(r) is the radial wave function and l is the an-
gular momentum. With such a representation ε is
given in rydbergs and vl in atomic units.

The model potential of the electron ion-core inter-
action has a form

( )l lv A= − ε   for r ≤ Rm,

l
zv
r

= −   for r > Rm, (3)

here Rm is a model radius closed to the ion-core radius
which provides for joining the inside and outside so-
lutions of the wave equation.
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After making a substitution of Zrρ =  and

2 lr A ε= −ρ  into expression (2), it will be written as

( )2

2 2

11 1 0
2

l l + ∂
− + + χ = ∂ρ ρ 

 for r ≤ Rm, (4)

2

2 2
( 1) 2 0l l ∂ + ′− − + χ + ε χ = ρ∂ρ ρ 

 for r > Rm,

where
2/ z′ε = ε . (5)

Solution of equation (4) are the spherical Bessel
functions and equation (5) is the Coulomb wave one
which was solved according to the procedure de-
scribed in [2].

By setting the logarithmic derivatives from solu-
tions of equation (4) equal to those in equation (5) at
r = Rm one obtains an expression for determining the
parameters Al:
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,

where

2m l nlx R А= − ε , (6)

jl(x) denotes the spherical Bessel functions, 0U 

l, 1U 

l

are regular and irregular parts of the Coulomb wave
function respectively, N = n – δnl expresses an effec-
tive quantum number, Dl = ρ(dUl/dρ),

2 1Г( ) tg ( 1)( , )
Г( 1)

lN l N N lN l
N l

+− π − −
γ =

+ +
, (7)

where Г is a gamma-function [3].
The values of spectroscopic terms ε = εnl were cal-

culated from tables [4]. Al values as function of en-
ergy ε = εnl at fixed l.

Al may be calculated precisely only for the ener-
gies which are consistent with the lines observed in
the electron emission spectra of a core potential. There
in the function Al(εnl) is chosen so that the model
potential will give eigen values consistent with εnl.
Therefore, first, we estimate Al for as many energy
values as experimental lines exist, after wards linear
interpolation add extrapolation to the Fermi energies
is made.

Here the question arises, what value is a real en-
ergy of the conduction electrons.

In contrast to isolated ion (eq. (2)) Schrodinger
equation for the conduction electron in metal has a
form

2
2 ( ) ( )

2 ion restV V
m

 
− ∇ + + ∑ + + ∑ Ψ = εΨ 
 

h , (8)

where (V + Σ)ion is the potential of this ion and
(V + Ψ)rest is the potential caused by other ions and
conduction electrons.

Expression (8) may be written as

2
2

ion rest( ) ( ( ) )
2

V V
m

 
− ∇ + + ∑ Ψ = ε − + Σ Ψ 
 

h . (9)

Equation (9) is similar to equation (2) for an iso-
lated ion with electron energy

EF = εF – (V + Σ)rest, (10)

where

2 2

*
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ε = − − +µ +µ + − 

 

− − +

h

(11)

Ii is the ionization energy of outside electron in a free
atom, Ic is the electron cohesive energy, kF is the
Fermi radius, m* is the effective electron mass, Ех is
the exchange energy, Ес is the correlation energy of a
free electronic gas per an electron, µх and µс are re-
spectively, exchange and correlation potentials, and Ra
is an atomic radius.

The potential (V + Σ)rest induced by the rest residual
ions and conduction electrons may be written as [5]

Σrest =µх + µс, (12)

22

rest
33
4

m

a a

RZeV
R R

  
 = −  
   

. (13)

Figure 3 shows an energetic dependence of pa-
rameter A0 for an electron in the field of a three-
charged ion. The energy levels εnl in Al3+-ion, the
Fermi energy F′ε and that of the bottom of conduction

band 2 2
0 / 2F Fk m′ ′ε = ε − h are shown in terms of the

ion energy [6].
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Fig. 3. Energetic dependence of the parameters Al for l = 0
and z = 3. Dashes region corresponds to the energies of the 

occupied conduction electron states
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The ion-core radius Rc is an important value for
calculating interatomic potential. Its procedure esti-
mation is following.

According to [7, 8] the wave electron function out-
side the core has a form

( )
2 1

13
2 ( 1)! exp( / 2) ( )

!
l

n
n l L

n n l
∗ ∗ + ∗

+
− −

Ψ = − −ρ ρ ρ
+  

, (14)

where L is the added Lagerr polynomial, ρ*=2Zr/na0,
a0 is a Bohr radius.

Then the wave function will be
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− − +∑

(15)

Inside the core it is

( ).nl lArjΨ = ρ% (16)

Here A is a normalization factor,

, 2 .l nlyr y Aρ = = − ε%

Expression (15) included the numbers up to (n – 2) or-
der, * 2n−ρ  and * 3n−ρ  are the major ones. If keep only
these two members, one may think that n adopts any
fractional values. At cr R=  the logarithmic deriva-
tives from expressions (15) and (16) may be set equal:

* *
0

1 1 2 2
2 ( 1)( 2)

2 .
1  ctg  

n
nan n

y

 − Ζ
− + + = ρ ρ − + − 
 ρ

= − − ρ ρ ρ 

%

% % %

(17)

By solving graphically equation (17) we hand
found the ion-core radius of additionally ionized atom.

As it should be guess cR  value seemed to be not
very sensitive to the degree of ionization.

As for an effective mass and charge of electron
conduction, we counted * / 1m m = , as it was done in
[1], while the parameter inserted in expression to de-
fine the effective charge ( )* 1e e= + α , which results
from orthogonality correction, was calculated from a
formulae

( )3/ / 2.c aR Rα = (18)

Table 1. Parameters of model potential
Z A0 A1 A2 Rm Rc α
3
4

1.38
1.45

1.64
1.756

1.92
1.46

2
2

1.08
1.05

0.024
0.022

Table 1 illustrates the parameters of a model po-
tential for usually charged aluminum, taken from ref-

erence [1], and those obtained by us for additionally
ionized core for comparison. All the measured values
are in atomic units.

Figure 4 represents the potential of interatomic in-
teraction for different charged states in aluminum
which were estimated using the above data. Calcula-
tion was done for a situation when the ionized atom
concentration is small and consequently the conduc-
tion electron concentration does not differ from an
usual one.
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Fig. 4. Interatomic potential: 1 – Al3+ and Al3+; 2 – Al4+ and 
Al3+; 3 – Al4+ and Al4+

This figure shows that ionization leads to the
strong decrease in the depth of the first minimum of
the potential function corresponding to the distance
area between the nearest neighbors for three- or four-
charged ions. Moreover, for the pair of particles with
four charges the first minimum disappears absolutely.
Atoms fall to the repulsion branch of interaction po-
tential. As a result, the crystal lattice changes to the
state of nonequilibrium.

On the basis of the similar potentials of intera-
tomic interactions, applying the method of molecular
dynamics, we modeled the dispersion of aluminum
surface within the track of charged particles. It was
shown that ionization greatly affects the dispersion
process of surfaces of metals. However, the molecu-
lar-dynamic dispersion modeling in many cases is
qualitative. For the more thorough investigation of
destruction processes of surfaces we should solve the
equation of thermal elasticity, where in its turn we
should know the equation of substance condition [9].
Therefore, on the basis of the pseudopotential ap-
proach of the previously obtained materials using
aluminimum as an example, we constructed the equa-
tions of conditions of metals, taking into account the
ionized conditions.

3. Equation of Matter States

While studying the radiation-stimulated processes it is
necessary to learn out not only the interatomic cou-
pling potential, but the consistent relations considering
the ionized particles, as well. Such relations can be
provided on the basis of binding energy.

According to the pseudopotential, the binding energy
in the model of the second order looks as follows:

(0) (1) (2)( ) е е е iE E Е Е ЕΩ = + + + , (19)
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where Ω – atomic volume, (0)
еЕ – the energy of homo-

heneous electron gas, including the kinetic, exchange
and correlative energy of conduction electrons, (1)

еЕ  –
the energy, caused by the fact that the ions are not the
points and have some dimensions, (2)

еЕ – energy of
zonal structure, Еi – Evald energy.

Static component of pressure Pst(Ω) can be defined
by equation

st
ЕP ∂

= −
∂Ω

. (20)

The contribution caused by harmonic phonon pres-
sure and zero oscillation energy has been negligible.

The registration of differently ionized atoms was
being made on the base of technique, been developed
for the alloys of replacement.

The (0)
еЕ  was being defined assuming that δ-

electrons were leaving the observed area and concen-
tration of conduction electrons was staying fixed [10].
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Fig. 5. Aluminum isotherms for 0 K temperature: 1 – par,
2 – 10% of ionized atoms; 3 – 20% of ionized atoms

Calculating the (1)
еЕ  and (2)

еЕ , the model potential
parameters (after quantum defect method [11]) had

been taken. Fig. 5 shows the aluminum isoterms at the
0 K temperature for the different grades of ionization.
So the 10% ionization results in the 15 kbar internal
pressure appearance.

The consistent relations, resultant, are proposed to
be engaged for studying the destruction of surfaces
under the charged particles sturdy beam bombard-
ment.
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