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Abstract – It is suggested and realized a simple
method for simulation of nonlinear dynamics of
target surface at influence of intensive charged
particle beams. There are carried out a computer
experiment and comparison of simulation results
with experimental and calculated results of other
authors. There are investigated mechanisms of a
drop formation at influence of target.

1. Introduction

Solid target irradiation by intensive energy streams
(they are electron, ion, laser beams) causes accelera-
tion of the treated surface, which ranges from 108 to
1011 m/s2 and has impulse behavior. Having such re-
gimes of acceleration, complicated dynamic processes
appear on the treated surface such as the formation of
gravity waves, Rayleigh surface waves, development
of Richtmyer-Meshkov instability [1]. The universal
method of problem modeling is direct numerical
simulation, which consists in numerical solution of
continua mechanics equations. Its main advantage is a
possibility to take into account matter compressibility,
surface tension, viscosity, arbitrary geometry and
boundary conditions. However, these calculations
require long super computer work [2–5].

Potential flow of incompressible liquid is often
considered to simplify a problem [6]. With this ap-
proximation the analytic solution of this problem is
possible only for two dimension geometry in case of
weak nonlinearly description.

We have developed the numerical method [7, 8] of
nonlinear dynamics studying of continuous matters
interface with different densities. It is based on the
local mapping coordinates method so that Laplace's
equation would be the same. This approach lets study
interface dynamics without calculating flow in liquid
volumes. It makes possible to carry out complete nu-
merical research by means of average capacity com-
puter. Present paper describes this method generaliza-
tion for three-dimension case, the numerical research
results of the treated surface and drop formation, when
charged particles beams irradiate one.

2. Model. Computer Experiment. Discussion

In case of incompressible liquid potential flow its in-
terface dynamics is determined by equation set, which

consists of Laplace's equations for scalar, ϕ , and
component of vector, { , }x y= Ψ ΨA , potentials for
fluid volume, Bernoulli’s equation and cinematic con-
dition on the boundary between fluids. Three-
dimension interface between incompressible liquids
with different densities is ( , , )Z Z x y t=  which is peri-
odic with spacious period Lx along axis x , and Ly

along axis y. To simplify we consider function Z has
the following symmetry conditions: Z(x, y, t) =
= Z(–x, y, t) = Z(x, –y, t) = Z(–x, –y, t). Similar to Ref.
[7, 8] let us introduce the parametric representation of
an interface. Cartesian coordinates of interface points
(X, Y, Z) are functions of new variables L, H:

( , , ); ( , , ); ( , , )Z Z L H t X X L H t Y Y L H t= = = . Two pla-
nes are passed at the fixed interface point. One of
them is parallel to axis x; the other one goes along axis
y. The curve length along L-line counted from certain
initial value 0 ( )L H  gives value L, while the curve
length along H-line determines coordinate H. Periodic
function Z  in ( , )x y  is not cycle in ( , )L H . Therefore
to avoid this we use normalized contour lengths:

0 0/ ( ), / ( )l L L H h H H L= = . Function Z  is periodic
in variables ,l h . Each point has its local basic, so we
have n  as normal vector, while
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are tangent vectors to L-lines and и H-lines,
correspondingly. Normal vector is defined as

[ , ] / , [ , ]L H L HB B= =n e e e e .
To reduce hydrodynamic flow in liquid volume to

interface dynamics we carry out transformation of
coordinates ( , , ) ( , , )x y z → ξ ς η , which converts liquid
volumes into half plane in new variables. The addi-
tional condition is imposed on coordinate transforma-
tion. It is necessary to not change the Laplace's equa-
tion form. Then instead of exact coordinate
transformation we use local ones to satisfy the men-
tioned conditions for certain vicinity of the fixed inter-
face point. We have derived the equation-linking sca-
lar and vector potentials by means of coordinate local
transformation and analytic solution of Laplace's
equation for rectangular area. The closed equation set
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determining three-dimension interface evolution, is
the following:
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Here we have the substitution of integration over wave
numbers for sum over modes was made;

( ) /( )A + − + −= ρ −ρ ρ +ρ  is Atwood number; ,+ −ρ ρ
are fluids densities. Derived system solution was car-
ried out numerically by the method, described in detail
in Ref. [7].

The dynamics of three-dimension instability de-
velopment is given in Fig. 1. The initial perturbation
is defined as the production of cosines:

0 cos( )cos( )Z a x y= π π . At 1.2τ =  the surface Z
loses its a single-value that makes impossible plotting
three-dimension surfaces by simple graphic editor.
Then we show profiles on two planes: 0x = and
x y= . A drop is formed on the plane 0x =  (or

0y = ), but on the plane x y=  a spike does not have a
constriction. It is caused by the presence of less mov-
able domain situated in the grid center ( , )x y . As the
initial perturbation is defined as the production of co-
sines, there is the area for the vicinity of the point
(λ/4, λ/4) where Z ≈ 0.

Fig. 1. The dynamics of three-dimensional Richtmyer-
Meshkov instability development for a0 = 0.1 m, λ = 2 m, 

u = 100 m/s, A = 1

Figure 2 shows the comparison with the results
given in Ref. [5]. The calculations have been made
before ξ = 1.5 when the computable domain loses its
simple connectedness. The results are independent
from number of grid points or number of taken modes
until ξ = 1.5 as well as ones obtained in case two-
dimension instability. On the whole the results are not
contradictory and satisfactory fitted at the present the-
ory development stage they. It is worth noting the pre-
sent computations were carried out on PENTIUM III.
It has taken two hours to calculate three-dimension
instability with a grid 80×80 in calculating domain
and number modes of 8×8.

Fig. 2. Dependence of a spike grow rate (2 )v k g u= π
(positive numbers) and a bubble grow rate (negative num-
bers) from /(4 )Agk tξ = π  for a0 = 0.1 m, λ = 2 m,
g = 200 m/s2 and A = 0.05. Markers are results of authors of 

Ref. [5]; lines are our results
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We have studied conditions of drop formation and
its separation on the treated target surface as a result
of interface instability between “plasma–condensed
substance” using 2D code [7]. Values on the surface
(Atwood number, liquid particle acceleration) were
determined by means of code BETAIN1 [9, 10]. The
interface fuzziness (density gradient continuity) was
taken into account by using an effective Atwood num-
ber. The initial perturbation is Z(x, t = 0) =
= a0 cos(2πx/λ). Irradiating of target by charged parti-
cle beams with ranges about microns (ion and low
energy electron beams used for technical purposes) the
strain of interface is exposed to influence on processes
on the free plasma jet surface. There is the highest
speed wavelength (λ0 is the order of some microns).
Drop separation is stated to occur when Z ≈ λ. In case
of sharp interface (there is density leap) discontinuity
amplitude rate is about ∼λ–1 [1] and so the separation
time is about ts ∼λ–2. Such estimation is valid for
λ > λ0. Our results show weak dependence ts on λ at
λ < λ0 and presence of dependence ts on 0 : sa t ∼ 1

0a − .
According to our calculations drop diameter is d ∼ λ/2.
Therefore the most intensive process is drop formation
with d ≤ λ0/2. Having initial amplitude large enough
a0 ≈ 0.1–1 µm formation of such particles may occur
during one irradiation impulse.

As our calculations show in case of target irradia-
tion by beams with the range tens microns (light ions
with some MeV) drop formation with d ≤ λ0/2 is the
most probable. Slow Atwood number approach unit is
common feature when target is irradiated by beams
with range tens hundreds microns. It is caused by slow
massive (“thick”) plasma layer dispersion. As Atwood
number is considerably less than unit. It causes flat
vortex formation, which afterwards separates from
substance volume. At separation time cross drop di-
ameter is d ∼ λ, and so waist constriction is accompa-
nied with merging of neighboring vortexes. Therefore
in this case it is better to consider this process as
mixing of condensed substance. This question requires
further studies and turbulence mixing consideration.

3. Conclusion

Thus we are suggested a simple method of reduction
of the three-dimensional hydrodynamic flow in an
irradiated target to nonlinear dynamics of its surface.
Nonlinear differential equations of the presented
model are solved on a personal computer. A computer
experiment and comparison of our results with ex-
perimental and theoretical results of other authors are
carried out. Conditions of a drop formation at influ-
ence of target by charged particle beams are investi-
gated in two-dimensional geometry.
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