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Abstract − The problem has been examined on
functional dependency determination of tangent
stresses relaxation time on the parameter state of
deformable medium. The relaxation time has been
introduced by certain interpolation formula con-
taining several free parameter subject to determi-
nation on the base of experimental diagrams of
dynamic deformation. Experimental data have
been interpreted in term of Maxwell model of
visco-elastic medium. From mathematical point of
view, the procedure of parameter finding for In-
terpolation formula is optimal control problem. It
comes to the minimizing of the functional of mean-
square deviation. This functional depends implic-
itly on relaxation time playing here the role of con-
trolling function. The minimum search of func-
tional of mean-square deviation has been carried
out using the method of Nelder-Mead.

1. Introduction

The relaxation time τ is important rheological charac-
teristics of materials. It has been used, when the
rheological state equation has been formulated and
time-dependent phenomena of irreversible deforma-
tion have been explained and mathematically de-
scribed.

Time relaxation finding is not simple problem.
Firstly, time τ is complex and sharply changing func-
tion of internal state parameters, loading speed, tem-
perature. The shape of this function is unknown and is
determined by extremely pictures of microscopic de-
fects motion. Secondly, there are not experimental
methods allowing measuring the relaxation time im-
mediately. Only oblique developments of relaxation
phenomena are accessible for measurement and fol-
lowing interpretation. Particularly, it relates to using
in this problem macroscopic effect consisting in the
distinction of deformation diagrams for various load-
ing velocities and various temperatures. The calcula-
tion of deformation diagram is obtained as the result
of the numerical integration of one dimensional equa-
tions of visco-elastic medium. The relaxation time is
included in the coefficients of these equations.

Used here procedure is based on the results of the
papers [1–4]. The general approach to the problem
under study is described in [1, 2]; the interpolation
formula for the relaxation time is obtained on the base
of the analysis of the plastic deformation kinetics of

metals [5] and presented in that papers. The state
equation for series of metals correct for no-ball strain
tensor is presented in [3]. Finely, the mathematical
model of visco-elastic medium that we use when we
treat the experimental diagrams is described in [4].

2. The Mathematical Model and the Treatment
Procedure of Experimental Diagram Deformation

The mathematical model of visco-elastic medium of
Maxwell’s type is described in details in [4]. Besides
the conversion law, this model includes the entropy
balance equation and evolution equation for the tensor
of effective elastic strain εik. The latest equation con-
tains the tensor describing the rate of non elastic proc-
esses, that is, the relaxation rate. It is necessary to give
two scalar functions

( ),ikE E S= ε , ( ),ik Sτ = τ ε (1)

for full identification of the model. The fist of them
determines the state equation, the second gives the
relaxation time. The state equation allows, using the
first thermodynamic law, to calculate the stresses σik
and temperature T:

( )2ij ik ik
kj S
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The various ways of the state equation parametri-
zation are possible [3, 4]. If the coefficients of stress-
strain along the principal axis’s 1 2 3, ,k k k  are assumed
as strain tensor invariants, that is suitable for our
problem, we shall obtain
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instead the first formula (2). We shall guess further,
that the functions (1) are given in the form

( ),iE E k S= , ( ),ik Sτ = τ . (3)

The problem on one-axis loading of model speci-
men (thin rood) underlies the examined procedure.
On the assumption of uniform distribution of strains
along the rood length (oriented along the axis Ox1)
this problem is reduced to the solution of the equation
system
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That is hybrid equation system including differen-
tial equations and final algebraic correlations. The first
equation of the system (4) reflects thermodynamical
aspects of deformation – entropy change during re-
laxation process of the tangent stresses. The second
equation describes the change of the basic deformation
characteristics – effective coefficient of axis tension
(pressing) k1. The third equation expresses the condi-
tion of transversal stress absence taking into account
the symmetry of the problem k2 = k3. It is nonlinear
algebraic equation from which one can calculate the
characteristics of lateral deformation k2. At last, the
latest two equations of the system (4) are implicit or
no implicit (depending on the state equation form)
algebraic correlations allowing to calculate the tem-
perature T and deformation diagrams σ1 = σ1(ε1).

Differential equations are solved at the addition
conditions

0 0tS = = , 1 0 1tk = = , ( )1 1 consttε = ε =& & ,

the latest from which means, that hard testing machine
is modeled numerically, when constant deformation
rate is provided, and the load is recorded magnitude.

Let us assume that theoretical σ = σ(ε τ) and ex-
perimental ˆ ˆ ( )σ = σ ε  deformation diagrams are known
(here and further, index “1” near the variables σ1, ε1 is
omitted for short). Theoretical curve is the solution of
the problem (4) and depend on the function τ as on the
parameter. Let consider the functional
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Φ τ = ε ε − ε σ ε 

∫ , (5)

meaning geometrically the normalized by some way
difference of the areas under deformation curves. This
functional is positively defined and bounded below;
when the diagrams coincide entirely, it vanishes.

The problem is formulated so: it is need to find the
function τ, included in the system (4), when the func-
tional Φ  reaches minimum. From mathematical point
of view, it is the optimal control problem. The relaxa-
tion time τ plays the role of the controlling function.
Presenting this function by certain interpolation de-
pendency

( )1 2, , , ,...,i nk S a a aτ = τ , (6)

containing n free parameters ai and substituting the
integral included in (5) by some quadrature formula,
one can reduce the problem of the functional minimi-
zation to the finite dimensional problem of the mini-
mization of the function on n variables
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The values of weighting coefficients wi depend on
the type of used quadrature formula.

To find the minimum of the function F we have
use the method Nelder-Mead [6], when we have solve
numerically the differential equation system (4), we
have use the Runge-Kutta’s method of four order of
accuracy according to recommendations [1].

The dependency
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had been used as interpolation function (6), where εp,
σs are the intensity of the plastic strains and tangent
stresses correspondingly. This formula follows from
the analysis of dislocation kinetics of the plastic de-
formation and is proved in [1, 2]. The parameters
a2, …, a6 have certain physical sense [5].

3. Numerical Results

We have used the experimental deformation diagrams
of aluminum alloy АМg-6 at various temperatures
(298–523 K) and deformation rates (less than 2000 с–1)
from works [7, 8]. The numerical results (solid and
dotted lines) are presented in Figs. 1–8 together with
corresponding experimental data (geometrical insignia –
square, circle, and triangle). Negative value ε&  corre-
sponds to tests towards compression, positive relates
to tension ones.

Experimental points have been used to determine
the optimal parameter set ia∗, so that ( ) miniF a∗ = , i.e.

parameter set when numerical and experimental dia-
grams are maximal close. Typical step of iteration
process consists in the following. According to
Nelder-Mead’s algorithm, there is the polyhedron
(simplex) in n-dimensional space, in the apexes of
which the function F is known. This polyhedron has
been rebuild for each iteration so that the change of
the worst apex, where F is maximal by new best one,
where F takes the smaller value. As a result, the mo-
tion towards the point of minimum ia∗. Each new point
(a1, a2, …, an) determines, according to (7), new func-
tion τ. Using this function the equation system (4) has
been solved and new deformation diagram σ = σ(ε, ai)
depending on current parameter set ai  has been  build.
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Then the value of the function of mean-square devia-
tion F has been calculated and the decision, the regu-
lar trial is successful or no, has been taken. After that
the choice of new point (a1, a2, …, an) is carried out
and the process has been repeated. As finely diagram,

( , )ia∗σ = σ ε  has been assumed, and the parameter set

ia∗  corresponding to the minimum point determines
the sought dependency (7). The closeness of calcu-
lated and experimental diagrams serves as perform-
ance criterion.

The deformation curves corresponding to the ten-
sion and compression tests are presented in Figs. 1, 2.
for the room temperature T = 298 K and various
loading speeds. The results corresponding to several
initial temperatures are shown in Fig. 3 for the closed
deformation rates. These results indicate earnestly,
that one can approximate arbitrarily exactly each indi-
vidual diagram ˆ ˆ ( )σ = σ ε  for given T and ε& . It is nec-

essary, however, to note that own parameter set ia∗

different from other curves has been obtained for each
experimental curve. If the values ia∗  corresponding to
some curve, for example 2, are fixed and used for nu-
merical modeling of test series enclosing the wide
diapason of the loading conditions, we shall obtain the
qualitatively correct picture. For example, the evalua-
tion of ε&  gives the curves located higher then experi-
mental curve 2. However, one can expect quantitative
agreement of numerical and experimental results only
for small vicinity of curve 2, i.e., if ε&  differs from
400 с–1 not very greatly. That is illustrated in Fig. 4,
where one can see the dotted curve calculated for

1200ε =& с–1 with the help of values ia∗  corresponding
to the rate 400ε =&  с –1. This curve deviates essentially
from corresponding experimental points.

One can use simultaneously several experimental
diagrams, then the functional (5) will include several
items, each from which corresponds to individual dia-
gram. In this case, it is succeed to describe satisfacto-
rily both experimental curves shown in Fig. 1 by one
set of constants ia∗ , however the approximation accu-
racy for each separate curve falls visibly. One cannot
say that it takes a place in Fig. 3. Defining the mini-
mum point for the functional using three experimental
curves, one can see that theoretical curves groups near
the curve 2, approximating the experimental points 1
(T = 298 K) and 3 (T = 523 K) equally badly.

It is clear from above, that entered into interpola-
tion formula (7) coefficients could be guessed as
functions of T and ε& , with the dependency on tem-
perature is more essential then on deformation rate
one.

Let us note, that depending on experimental dia-
gram’s type, it is expedient sometimes to use no gen-
eral formula (7), and its simplified variants: n = 5,
a6 = 0 (linear hardening), and n = 4, a5 = 0, a6 = 0

(fluidity area, ideal plasticity). General formula de-
scribes well linear hardening at n = 6 [8], as it is
shown in Fig. 5, but gives worse results for linearly
hardening materials (Fig. 1, 2, dotted line), then more
simple variant n = 5 (Fig. 1, 2, solid line).

Time relaxation change along numerical curves 1,
2, presented in Fig. 1, is shown in Fig. 6. It is shown
that the function τ changes more essentially near the
vicinity of elastic-plastic transition.

The relaxation curves are presented in Fig. 7, 8.
Aluminum rood is loaded to ε of certain value, further
the deformation is fixed and sustained for the same
level. The curves 2–7 reflect the exponential attenua-
tion of the stresses at the fixed value of strains. The
stress relaxation does not occur when the elastic de-
formation stage is observed (line 1).

4. Conclusion

Optimal values of interpolation coefficients are deter-
mined in developed variant of computer procedure by
one are several deformation diagrams. In the last case,
each experimental diagram can be included in func-
tional with own statistical weight, taking into account
the accuracy of experimental data.

In distinct to [1, 2], this method is added by the al-
gorithm of the minimization of the functional of
mean-square deviation and automatized fully. This
method is universal enough and allows evaluating
practically the capacity for work and flexibility of
interpolation formula of arbitrary view.

The calculations show that the interpolation for-
mula (7), constructed on the base of dislocation micro
mechanism of plastic deformation, allows to approxi-
mate with enough accuracy the dynamic deformation
diagrams in the comparatively narrow diapason of the
loading parameter changes. The approximation of
wide-range series of experimental curves could be
carried out enough accurately, if the parameters of
interpolation formula are taken as the function of the
temperature and deformation rate.
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