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Abstract – We consider a space-time nonlocal mass
transfer model to discuss some properties and solu-
tions of an universal diffusion equation, which de-
scribes the space-time evolution of substance con-
centration and mass flux in thin films under highly
intensive pulse beams irradiation. The model iden-
tifies two internal parameters – the delay times of
flux and concentration gradient. Employing the
method of Laplace transform, the present work
derives the analytical expressions for mass flux. An
influence of the initial fluxe rate on mass transfer is
investigated.

1. Introduction

Among the known anomalous phenomena mass trans-
fer in metals and alloys under influence of concen-
trated flows of energy (ion, electron and laser beams
of nanosecond duration) [1–4] take place such as step-
like distribution of concentrations of impurity, and
non-monotone of concentration profiles. As one of the
possible reasons, explaining various kinds of anoma-
lous migration of atoms of impurity under fast-
transient processes in small spatial volumes, is, proba-
bly, local-nonequilibrium heat and mass transfer. In
the given work the role space nonlocal, given by arise
and relaxation of viscoelastic mechanical pressure, on
shaping the concentration fields in metal films under
pulsed influences by powerful beams of particles are
estimated.

2. Mathematical Model

Within the framework of extended irreversible ther-
modynamics [5, 6] one dimensional equation for flow
of particles J(x, t) (or concentrations of impurity atoms
c(x, t)) in binary system under fast-transient processes
in isothermal approach has the form [7, 8]
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t t x t x
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Here D is diffusion coefficient, which is taken
constant; τ1 and τ2 – relaxation time of flow and gra-
dient of concentration, respectively. Equation (1) is
nonlocal in both time and space. Spatial nonlocal
means that specific flow of mass and concentration
gradient are connected between one another not in one
spatial point with coordinate х, as in classical Fick’s
law, but in a certain neighbourhood of this point with

characteristic size h. Time nonlocal appears due to
take in to account relaxation processes (the gradient of
concentration in point x systems initiates the flow of
mass not in same moment of time t, as in local-
irreversible approach, but for time of relaxations τ1
later). The equation of transfer (1) contains partial
derivative third order. It combines the characteristics
of wave equation (under τ2 = 0), describing transport
of concentration waves with final velocity in system,
as well as diffusion equations (under τ1 = τ2 = 0), cor-
responding to dissipative mass transfer.

Let us construct the solution of equation (1) for
flow on metal film 0 < x < l with following initial

( ,0) 0=J x , 0( ,0) /∂ ∂ = &J x t J (2)

and boundary conditions

0(0, ) =J t J , ( , ) / 0∂ ∂ =J l t x  at t > 0. (3)

I further introduce the dimensionless flow

0( , ) ( , ) /χ ξ τ = ξ τJ J (4)

and following dimensionless variables 2/( / )τ = t l D
and /ξ = x l .

The dimensionless form of eq. (1) with initial and
boundary conditions (2)–(3) then can be rewritten as

2 2 3

2 2 2
∂χ ∂ χ ∂ χ ∂ χ

+ α = +α
∂τ ∂τ ∂ξ ∂ξ ∂τj c , (5)

( ,0) 0χ ξ = , 0( ,0) /∂χ ξ ∂τ = χ& , (6)

(0, ) 1χ τ = , (1, ) / 0∂χ τ ∂ξ = , (7)

where 2
2 /( / )α = τс l D , 2

1 /( / )α = τj l D  are dimen-

sionless relaxation time; 2
0 0 0( / ) /χ = && J l D J  is dimen-

sionless initial mass flux rate.
For solving of boundary problem (5)–(7) the

Laplace transformation is used. This transformation
reduces equation (5) to an ordinary differential equa-
tion involving only ξ-derivatives:
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. (8)

The initial and boundary conditions in physical
space should be transformed into corresponding ones
in Laplace space
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(0) 1/χ = p , (1) / 0∂χ ∂ξ = . (9)

The Laplace transform solution satisfying (8)–(9)
is easily obtained:

( )( )
( )

2
1 1

2

11( , ) (1 )
 − ξ

χ ξ = + −  
 

ch z
p z z

p ch z
, (10)

where

1 0 /(1 )= α χ +α&j jz p , 2 (1 ) /(1 )= +α +αj cz p p p .

In order to obtain the solution for ( , )χ ξ τ  invers
Laplace transfer is used:

( , ) 1/ 2 ( , ) exp( )
γ+ ∞

γ− ∞

χ ξ τ = π χ ξ τ∫
i

i

i p p dp . (11)

The quantity γ is the real value of straight cut
contour of integration. To obtain solution for non-
dimensional flow the variable transformation
= γ + ωp i  is introduced and integral (11) is approxi-

mated by its Riemann sum
exp( ) ( , )( , )

2
γτ χ ξ γχ ξ τ = +τ 

( )
1

Re ( 1) , /
=


+ − χ ξ γ + π τ 


∑

N
n

n

in , (12)

where “Re” represents the real part of the summation.
Accuracy of aproximation of integral by Riemann sum
is defined by value of parameter γ and number N. Un-
der fixed γ one must choose N such that inaccuracy of
truncation less forward given to accuracy.

For turning from flow J(x, t) to particles concen-
tration c(x, t) the equation of balance of mass
∂ ∂ = −∂ ∂с t J x  is used. Then for dimensionless
function ( ) [ ]0( , )ξ τ = − iV c c D J l , where ci is initial
concentration of impurity in sample, we shall have

0

( , )( , )
τ
 ∂χ ξ

ξ τ = −  ∂ξ ∫
yV dy , (13)

here y is dummy integration variable for time. Nu-
merical calculation can now be applied to determine
the dimensionless concentration.

3. Results of Modeling

We shall assume a zero initial mass flux rate for the
time to study mechanisms associated with influence
space nonlocality on mass transfer in terms of τ1 and
τ2. Inserting Eq. (10) with 0 0χ =&  into Eq. (12), flux
distributions in the physical space are obtained by the
finite sum of the series. Fig. 1,a shows modeling re-
sults with the error norm being controlled below 10–5

(for achievement which enough there was take
N = 2000) for all cases. A small value of time
(τ = 0.05) is selected for avoiding the effect of wave
reflection from the boundary at ξ = 1. The value of αj

is fixed at 0.04 while the value of αc is сhanged. The
curve 1 with αc = 0 corresponds to the wave model
with a mass transport speed of (D/τ1)1/2 and a diffusion
damping effect. A sharp wavefront exists at
ξ = τ/(αj)1/2. As the value of αc deviates slightly

Fig. 1. Effect of the initial mass flux rate 0χ&  on the distribution
concentration flow (αj = 0.04, τ = 0.05); αc: 1 – 0, 2 – 0.002, 

3 – 0.04, 4 – 0.1, 5 – 0.5; 0χ& : a – 0, b – 10, c – 20, d – 40
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from zero to 0.002, implying the gradual activation of
the microscale effect, the sharp wavefront is destroyed
and the mass-affected zone extends deeper into the
medium. For the case of αc = αj, i.e. τ1 = τ2 and not
necessarily equal to zero (the curve 3), the flux distri-
bution approaches the result of diffusion, since Eq. (5)
is equivalent to the diffusion equation (known as
Fick’s law).

The mass flux level exceeds those of diffusion and
wave as the value of αc becomes large that of αj. The
amount increases with the value of αc and the mass-
affected zone significantly extends to a large distance
from the wall. Large deviations from the classical
wave theory shown in Fig. 1(a) indicate that the small-
scale response in space and time cannot be separated
and must be accommodated as an entirety. Although
the wave theory aims to capture the small-scale re-
sponse in time (in terms of τ1), it does not seem to be
complete until the microscale response in space (in
terms of τ2) is implemented.

The nonzero initial mass flux rate produces addi-
tional effects in the short-time response. For the same
values of τ and αj used previously, results are dis-
played in Fig. 1,b–d for 0χ& = 10, 20, and 40. Under a
moderate rate, 0χ& = 10, mass flux levels increase with
αc  (curves 3–5 in Fig. 1,b). This is the same behavior
as that in the absence of the initial flux rate shown in
Fig. 1,a. When the initial rate increases to 20, Fig. 1,c,
flux distribution with αc = 0.5 remains at the reference
level while flux in the neighborhood of the ξ = 0 start
to decrease when the value of αc increases. The rate
effect in this case dominates over the combined effect
of damping and reverses the qualitative trend in
Fig. 1,a where no initial rate is present. When the
value of 0χ&  further increases to 40, as shown in
Fig. 1,d, the field flux may exceed the wall flux
(χ = 1). No matter how high the initial rate space
nonlocality destroys the wave structure in mass
propagation. A slight deviation of from zero, as shown
in Fig. 1, destroys sharp wave front and reduced the
peak value of flow. In the presence of an initial flux
rate the result of diffusion is no longer retrieved by
special case with τ1 = τ2, since the classical diffusion
model is not compatible with the initial condition de-
scribing mass flux rate due to absence of a wave term
in the mass continuity equation.

The three-dimensional dimensionless concentra-
tion maps of the mass transfer problem for two sets of
parameters αc and αj are drawn in Figs. 2 and 3 in
depending of an initial values of mass flux rate. For
the small value of 0χ&  (< 10) maximum of concentra-
tion is observed at a surface of a film which increase
with time marching. When the value of 0χ& increases to
20 or 40, maximum of concentration are displaced
deeper into the medium and decreases with increase of

time. The non-monotone concentration profiles for the
certain values of initial mass flux rate are observed.

Fig. 2. Concentration fields of impurity atoms in film de-
pending on initial mass flux 0χ& : a – 0, b – 10, c – 20, d – 40; 

αc = 0.1, αj = 0.5
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Fig. 3. Concentration fields of impurity atoms in film depending on initial mass flux 0χ& : a – 0, b – 10, c – 20, d –40;

αc = 0.5, αj = 0.1
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