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Abstract – Nonideal heterojunction of AgBr-AgI 
has been considered. The Poisson equations for 
heterojunction in planar, spherical and cylindrical 
geometries have been solved in linear approxima-
tion. The expressions for band bending of hetero-
junctions are derived. Calculations of band bend-
ing vs. the size, forms of the core and the surface 
charge on the interface have been carried out. 
 

To increase of the efficiency of transforming the 
photon energy into the latent image centers it is neces-
sary to segregate electrons and holes, that is, to reduce 
their recombination velocity. To solve this problem 
methods of synthesis of silver halide microcrystals 
(MC) of a heterojunction type, a "core-shell", on the 
basis of AgBr-AgI are developed [1–3]. Silver parti-
cles in these systems upon exposure are formed on the 
interface. Silver halides are known to be large band-
gap, disordered according to Frenkel, ionic semicon-
ductors. In the heterojunction area of AgBr the band 
bending is directed downwards and in the heterojunc-
tion area of AgI – the band bending is directed up-
wards [4]. The thickness of the shell of AgI is 0,12 
μm. The size of the core of AgBr is 0,25 – 0,4 μm and 
comparable with the Debye length of defects. The size 
of the band bending on the heterojunction interface 
depends both on the core size and on the form of the 
heterostructure. Hence, changing the form and the 
sizes of the "core-shell" heterosystem it is possible to 
govern their photosensivity. 

Let us solve the problem of the influence of the 
form and the size of the "core-shell" heterosystem on 
the band bending on the heterojunction by means of 
[5]. The qualitative scheme of the distribution of the 
potential in the heterojunction of AgBr-AgI is repre-
sented in Fig. 1, where ψC is the junction potential 
difference caused by different work functions of 
electrons from AgBr and AgI; δψ1 – the band bend-
ing in AgBr on the AgI interface; δψ2 – the band 
bending in AgI on the AgBr interface; ψ1 – the dis-
tribution of the potential in AgBr; ψ2 – the distribu-
tion of the potential in AgI; ψ0 – the potential arising 
in the center of AgBr MC, because the volume 
charge in the center of the MC comparable with the 
Debye length is not equal to zero; h1 – a characteris-
tic size of the AgBr microcrystal. The ψC, δψ1, δψ2, 
ψ1, ψ2 potentials and the ψ0 are normalized on kBT/q, 
where kB is the Boltzmann constant, q – an elemen-
tary charge. 

 
Fig. 1. Qualitative distribution of potential in AgBr-
AgI heterojunction 
 

Let us write the Poisson equations for the AgBr 
and AgI MC. The concentrations of electrons and 
holes in these compounds are small in comparison 
with the concentration of the Frenkel defects – inter-
stitial silver cations and cation vacancies. The Frenkel 
defects in the electric field are distributed according to 
Boltzmann. Let us write the Poisson equations for the 
core and the shell in dimensionless variables  

    ( ) ( )10c10 sh ψ−ψ+ψ=ψ−ψ+ψΔ c ,         (1) 
( ) ( )22 sh ψ=ψΔ ,              (2) 
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is the Laplacian. The 1=i  index is for the core and 
the i=2 index is for the shell. Here ξi=x/li is the coor-
dinate whose beginning is in the center of the "core-
shell" system and normalized for the Debye length li: 
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where ε0 is the electric constant; ni– the equilibrium 
concentration of defects in a infinitely large crystal. 
The parameters are equal to m=0, 1, 2 for planar, cy-
lindrical and spherical systems, respectively. The 
equations (1–2) have the following boundary condi-
tions: − in the center of the "core-shell" system by 
virtue of the symmetry of the equation 
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− besides, according to Fig. 1 
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cψ=ψ )0(1 ,    (5) 
− on the core-shell junction by virtue of a continuity 
of the potential  

          ( ) ( )212111 lhlh ψ=ψ .        (6) 
Let us write the condition for a jog of electric in-

duction on the interface of two phases with account of 
the expression (3) for the Debye length 

        σ−
ξ
ψ

=
ξ
ψ

2

2
22

1

1
11 22

d
d

lqn
d
d

lqn ,         (7) 

where σ is the surface charge on the interface of 
two phases caused by the occurrence of torn off bonds 
due to the disorder of the lattices. The shell thickness 
is Δh>>l2. Therefore, the boundary condition for the 
potential ψ2 can be written as  

∞=ξ2 . 02 =ψ          (8) 
The characteristic sizes of the core are compara-

ble with the Debye length. Therefore, analytical solu-
tions to the Poisson equations are possible only in 
linear approximation. Let us write the equations (1), 
(2) in linear approximation 

    ( ) 1010 ψ−ψ+ψ=ψ−ψ+ψΔ cc ,              (9) 
( ) 22 ψ=ψΔ ,            (10) 

Let us consider the planar system. Let us imagine 
the core from AgBr as a planar infinitely large crystal 
with layers from AgI built up on lateral surfaces. For 
m=0 the equations (9), (10) can be written as  

( ) 10
2
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2 / ψ−ψ+ψ=ξψ−ψ+ψ cc dd , (11) 
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22

2 / ψ=ξψ dd .       (12) 
Let us write the solution to the system of the 

equations (11, 12) 
)exp(exp 121101 ξ−−ξ−ψ+ψ=ψ AAc , (13) 

        ( )22212 expexp ξ−+ξ=ψ BB .         (14) 
The constants of integration are calculated from 

the boundary conditions. Taking into account the 
boundary conditions (4), (5), we obtain 

         )ch1()( 1011 ξ−ψ+ψ=ξψ c .          (15) 
The ψ2 potential at ξ2→∞ should be limited. 

Hence, B1=0. Then  
             ( )2222 exp)( ξ−=ξψ B .         (16) 
The B2 constant is determined from the boundary 

condition (6) and is equal to 
      [ ]{ } )/exp()/ch(1 111102 lhlhB c −ψ+ψ= .    (17) 

Let us determine the band bendings of AgBr-AgI 
heterojunction  
     [ ]1)/ch()/( 1101111 −ψ=ψ−ψ=δψ lhlhc .   (18) 

12 δψ−ψ=δψ c .              (19) 
From the boundary condition (7), we obtain 

=ψ− )/sh(2 11011 lhlqn  
       σ−−−= )/exp(2 21222 lhBlqn .          (20) 

Let us express ψ0 from (18) through δψ1 and sub-
stitute it into equation (20). With account of 
δψ2 = ψ2(h1/l2) in (20) we obtain 
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Solving a system of the equations (19) and (21) 
relative to δψ1 and δψ2, we obtain 
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where α=1–1/ch(h1/l1). If the h1>>l1 expressions for 
the band bendings on the heterojunction are simplified 
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The potential ψ0 tends to zero. The relation of the 
band bendings for the ideal heterojunction (σ=0) is 
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According to (22) and (23) relative changes of the 
band bendings are calculated with account of the core 
size and the charge σ. The calculations were carried 
out by using the following parameters: l1=0,185 mμ , 
l2=0,019 mμ , ε1=12,5, ε2=7,15, n1=4,57·1014 cm-3 
and n2=4,25·1016 cm-3. The results of the calculations 
are resulted in Fig. 2.  

Let us consider the core as a flat disk with a layer 
of AgI built up on a lateral surface of a small cylinder. 
Let us write the Poisson equations at m=1 
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These equations are the Bessel equations and 
have the following solutions 

 ( ) ( )10210101 ξ−ξ−ψ+ψ=ψ KAIAc ,         (28) 
 ( ) ( )2022012 ξ+ξ=ψ KBIB ,            (29) 

where I0(ξi), K0(ξi) are modified Bessel functions of 
the zero order of the first and second genera, respec-
tively. Let us define the constants of integration A1, 
A2, B1 and B2. Given that K0(0)∞, we assume A2=0 
when solving (28). Proceeding from the boundary 
condition (5) we obtain 

( )]1[ 1001 ξ−ψ+ψ=ψ Ic .  (30) 
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Fig. 2. Influence of the characteristic size of the flat 
"core" on the band bending on the boundary of 
the AgBr-AgI heterojunction: δψ1/ψC – curves 1 – 3; 
δψ2/ψC – curves 1' – 3' (curves 1, 1' – σ/ψC=0; 
curves 2, 2' – σ/ψC=–1,6·10–9 С/sm2; curves 3, 3' – 
σ/ψC=1,6·10–9 С/сm2) 
 

The boundary condition (4), hitherto, is realized 
automatically, as 0)0()0( 10 ==′ II . The solution to 
ψ2 should be limited at ξ2→∞; the function I0(∞)–=∞. 
From here, B1=0. Thus 

( )2022 ξ=ψ KB  .           (31) 
The constant B2 according to the boundary condi-

tion (6), is equal to 
      { } )/(/)]/(1[ 21021002 lrKlrIB c −ψ+ψ= ,   (32) 
where 1r  is the radius of a cylindrical core.  

The equations for the band bendings are derived 
in the same way as for a flat disc and are defined by 
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At 211 , llr >>  the relations of the modified Bes-
sel functions can be written as [6] 
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Equations (33) and (34) for the band bendings have 
the form of (24) for a flat disc. According to (33) and 
(34) relative changes of the band bendings are calcu-
lated with account of the core size and the charge ο . 
Results of the calculations are resulted in Fig. 3.  
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Fig. 3. Influence of the radius of the "core" in the form 
of a cylindrical disk on the band bending on the 
boundary of the AgBr-AgI heterojunction: δψ1/ψC – 
curves 1 – 3; δψ2/ψC – curves 1' – 3' (curves 1, 1' – 
σ/ψC=0; curves 2, 2' – σ/ψC=–1,6·10–9 С/sm2; curves 
3, 3' – σ/ψC=1,6·10–9 С/сm2). 
 

Let us consider the core as a spherical particle 
(radius r1) with a built up layer of AgI. The Poisson 
equations at m=2 have the form of 
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Let us write the solution to equations (35) and (36) 
with account of the boundary conditions (4) and (5) 
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The constant B2 is derived from the condition of 
the equality of potentials (6) on the boundary of two 
phases 

)/exp()/ch(1 11
2
1

11
1
1

02 lr
l
rlr

r
lB c

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−ψ+ψ=

. 
The equations for the band bendings are derived 

in the same way as for a flat disc and are defined by 
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At r1>>l1, l2 expressions (39) and (40) for the band 
bendings assume the form of (24) for a flat disc. Ac-
cording to (39) and (40) relative changes of the band 
bendings are calculated with account of the core size 
and the charge σ . The results of the calculations are 
resulted in Fig. 4.  
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Fig. 4. Influence of the radius of the "core" in the 
spherical form on a band bending on the boundary of 
the AgBr-AgI heterojunction: δψ1/ψC – curves 1 – 3; 
δψ2/ψC – curves 1' – 3' (curves 1, 1' – σ/ψC=0; curves 
2, 2' – σ/ψC=–1,6·10–9  С/сm2; curves 3, 3' – 
σ/ψC=1,6·10–9 С/сm2) 

From Fig. 2–4 it is seen that increase in a charac-
teristic size of the core results in band bendings’ in-
crease in AgBr and band bendings’ decrease in AgI. At 
h1, r1>3l1 the band bendings on the boundary of two 
silver halides practically do not change with increasing 
of a characteristic size of a core. The negative charge on 
the interface of the phases reduces the value of band 
bendings in AgBr and increases the one in AgI. The 
positive charge on the interface of the phases, alterna-
tively, increases the value of band bendings in AgBr 

and reduces the one in AgI. The given effect is related 
to electroneutrality of the "core – shell" system.  

Increase in band bendings in AgBr results in in-
crease in the negative volume charge caused by cation 
vacancies. Increase in band bendings in AgI results in 
increase in the positive volume charge caused by in-
terstitial silver cations. Alternatively, the band bend-
ings on the AgBr-AgI heterojunction depends not only 
on the size of a core, but also on the geometry of the 
photosensitive "core – shell" system. It is necessary to 
note that the band bendings for planar and spherical 
heterojunctions are similar, and, hence, the photosen-
sivities of these systems must be comparable. There-
fore, changing the form and the sizes of the core, it is 
possible to change the band bending, and, hence, to 
govern the photosensivity of materials on the basis of 
silver halide microcrystals of a heterojunction type. 
 
References 

 

[1] S. Bando, Y. Shibahara, S. Ishimaru, Journal of 
Imaging Science. 25, 193 (1985). 

[2] E.I. Каgакin, Yu.А. Breslav, Т.А. Larichеv, А.I. 
Моkhоv, Zh. Nauchn. Prikl. Fotogr. Kinematogr. 
36, 353 (1991). 

[3] F. Granzer, J.I.R.M. 29, 109 (1992). 
[4] F. Granzer, Journal of Imaging Science. 33, 207 

(1989). 
[5] V.I. Il’in, S.F. Musikhin, А.Ya. Schik, Varizon-

nye poluprovodniki и geterostpuktury, Sankt-
Peterburg. Nauka, 2000. 104 с. 

[6] Handbook of Mathematical Functions, M. 
Abramowitz and J.A. Stegun, Eds., n.p.: NBS, 
1964. Translated under the title Spravochnik po 
spetcial’nym funktsiyam, Moscow, Nauka, 1972, 
872 p. 

 

280

___________________________________________________________________________________________Surface




