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Abstract – Based on the laws of conservation of 
energy and z-component of the field and particle 
momentum, it has been shown that under certain 
conditions a slightly inhomogeneous electron beam 
“squeezed” by a virtual cathode in a two-section 
drift tube exhibits stable spatial density 
distribution. The period and amplitude of space 
variations in the electron beam density have been 
calculated. Numerical simulation has demonstrated 
that in a smooth drift tube the spatial structure 
relaxes to the stationary state. A physical 
interpretation of the phenomenon has been given 
using the model of “potential” functions for 
electrons of the beam. 
 

1. Introduction 

It is well known that when an electron beam is 
injected into a two-section drift tube a virtual cathode 
(VC) develops at the tube junction under certain 
conditions and, when the injected current reaches a 
certain critical value, called the transition current (ITr), 
the VC streams toward the injection region, leaving 
the electron beam in a single-flux “squeezed” state 
behind [1-4].  

 
A detailed study of this phenomenon by numerical 

simulation has disclosed that under certain conditions 
a quasistationary spatially periodic structure (space 
variations in electron beam density and relativistic 
factor) with a certain period and amplitude may form 

behind the VC on the right. Neither these periodic 
structures nor the ways of their formation have been 
studied so far. In [5] theoretical investigation 
evidenced the possibility that periodic solutions for 
the relativistic factor and for the electron density in a 
smooth drift channel may exist, but the lack of 
explanation for the “squeezed” state and for the 
patterns of its realization by that moment did not 
allow research into these structures and solutions.  

2. Theory 

Consider a two-section drift tube with faces, each 
covered with a foil transparent for electrons (Fig.1). 
The tube has the electrostatic potential of an anode. A 
thin annular monoenergetic electron beam of radius Rb 
is injected into this system from the left. Let the whole 
system be placed in a strong longitudinal guiding 
magnetic field of strength H parallel to the tube axis. 
The magnetic field strength is so large that the Larmor 
radius of an electron is much smaller than the beam 
diameter.  

For an electron beam in a smooth homogeneous 
tube section, assuming the presence of longitudinal 
electric fields, we can write [5]: 
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where 2 21 1b bv cγ = −  is the relativistic factor of 
electrons in the beam,  Γ is the relativistic factor 
corresponding to the total voltage and I0 = mc3/e ≈ 17 
kA.    

Note that equation (1) coincides, to an accuracy of 
constant, with the law of conservation of the z-
component of the field and particle momentum for an 
electron beam transported in a smooth homogeneous 
drift tube, without disturbance [1].  

Introducing the notation: 
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Fig. 1. Schematic of the two-section drift tube
bounded by foils. R1, R2, L1, L2– radii and lengths of
the section, Rb – beam radius; the dashed line stands
for the region in the narrower section where the field
distribution is independent of the z coordinate.  
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where   

( ) 2 1b b bκ = Γ − γ γ − γ .          (3) 
and expressing equation (1) in these terms gives: 

( ) ( )2
b F Const′γ + γ = .           (4) 

It is known [6] that an equation of type (4) 
describes one-dimensional motion of a particle in the 
field of generalized potential F(γ) without external 
driving force. The character of the motion for particles 
of different energies is determined by the type of a 
“potential” function. Figure 2 shows “potential” 
functions for different values of the parameter κ (the 
dimensionless electron beam current). For 
convenience, the functions are normalized to the 
“potential” field energy equal to (2Γ-
1)/ ( )2

1lnb bR R R , i.e., for γb = 1. At currents lower 
than the limiting transport current (κ < κlim = 1.12), the 
function F(γ) is described by a double-humped curve, 
and the extremum of the function are found from 
relation (3). The smallest value of γb corresponds to an 
electron beam in the “squeezed” state. At beam 
currents κ→κlim, these extremum are degenerated to a 
point (point A) and γb =Γ1/3. At beam currents κ > κlim, 
the curve has no singular point.  

 
 

In the general case, we should integrate equation 
(4) by calculating the constant in homogeneous drift 
regions free of the longitudinal component of the 
electric field 0b z∂γ ∂ = . The exact periodic 
solutions for the “squeezed” electron beam can be 
obtained also by linearizing equation (1), given small 
deviations of the electron energy from the mean 
( γ = γ + γ ):  

2 2 2 0z∂ γ ∂ −ω γ = ,                  (5) 
where ( ) ( ) ( )( )2 3 2

02 1 lnb bR R Rω = γ −Γ γ γ −  (see [5]). 

3. Simulation of the spatial beam structure 

The density distribution of the squeezed electron beam 
has been calculated by simulating the transport of a 
thin annular electron beam in a two-section drift tube 
with the use of the PIC code КАRАТ [7]. 

The geometry of the drift tube used in the 
calculations is shown schematically in Fig.1.  

 
 

In all calculations, the radius of the narrow drift 
section and the beam radius remained constant (R1 = 
4cm, Rb = 2 cm, L1 = 50), whereas the radius of the 
wide section was varied from 4.1 cm to 20 cm, 
depending on the requisite transmitted current. An 
electron beam with initial energy U = 1.5 MeV was 
injected through the left foil of the drift tube. The drift 
tube was placed in a homogeneous longitudinal 
guiding magnetic field of strength H = 800kOe. Figure 
3 shows the calculated phase portraits of the 
“squeezed” electron beam when the latter acquires 
anomalous spatial density distribution and fills 
completely the narrow section of the drift tube. It can 
be seen from this figure that the spatial fluctuations 
behind the VC on the right decreases in amplitude as 
the VC shifts. Calculations have shown that this 
decrease owes to variation in the average electron 
density and average relativistic factor behind the VC. 
After a time (of order 10 ns), the density distribution 
relaxes to the stationary state for an infinite smooth 
channel with a certain transmitted current [3]. In the 
example given in Fig. 3, the current risetime is 50 ns 
for an injected current of 20 kA. For comparison, the 
same system has been calculated with longer current 
risetimes (up to ≥150 ns). The simulation has shown 
that the spatial structure, in this case, does not occur 
that is presumably associated with a slow VC velocity. 

Figure 4 shows the γ dependence of the period of 
the spatial structure for the squeezed electron beam. 
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Fig. 2. “Potential” curves for different beam currents
κ: 1) κ = 0.3, 2) κ = 0.866 = κF and corresponds to the
Fedosov current IF, 3) κ = 1.12 = κlim and corresponds
to the limiting transport current Ilim for the given
geometry, 4) κ = 1.5. Γ = 3.  

Fig. 3. Phase-plane portrait of the electron beam in the
two-section drift tube when the squeezed beam 
assumes anomalous spatial density distribution and 
relaxes to the stationary state. Calculations by the PIC
code КАRАТ. Rb = 2 cm, R0 = 4 cm,  L1 = 50 cm, R2= 
8 cm, L2 = 30 cm. Γ = 3. 
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This dependence was calculated by direct integration 
of equation (1) for a specified value of the “potential” 
function. It is seen from this figure that when the 
deviation from the mean γ  is small, the harmonic 
approximation agrees closely with the results of 
numerical simulation and direct integration of 
equation (1). With large deviations, the period of 
spatial fluctuations and the harmonic approximation 
differ considerably due to the potential well 
asymmetry. However, the explicit nonstationarity of 
the processes occurring in this case does not allow 
numerical estimation of the electron density 
distribution behind the VC.  

 

 
 

4. Discussion of the results  

In the quasistationary case, the shift of the VC causes 
the beam behind the VC on the right to pass into the 
squeezed state which, according to the laws of 
conservation, features an increase in electron density. 
Figure 5 shows two potential curves for the beam to 
the left (curve 2) and to the right (curve 1) of the VC. 
Since the transmitted current can be taken near-
constant (which it is not because of the current 
risetime), the passage of the beam into the squeezed 
state corresponds to the segment AB, with the value of 
the potential function F(γ) remained constant. 
Reasoning from the notion of “potential” functions, 
the beam in its passage to the squeezed state, may be 
thought as occurring in the multitude of potential 
wells between the points A and B. In this case, the 

distribution γ(z) will take the form of fluctuations. 
Computer simulation has shown that the amplitude 
and period of spatial fluctuations of the electron 
density behind the VC grow smaller with time. On this 
basis it can be stated that the amplitude and period of 
spatial fluctuations depend on the VC velocity and 
increase with increasing VC velocity. Thus, in this 
work the spatial density distributions of the squeezed 
electron beam have been originally obtained by 
numerical simulation and the interpretation of the 
phenomenon has been given based on “potential” 
functions for a slightly inhomogeneous electron beam.  

 
 

References 
 
[1] S. Ya. Belomyttsev, A. A. Grishkov, S. D. 

Korovin, and V. V. Ryzhov, Pis’ma Zh. Tekh. 
Fiz. 29 (16), 16 (2003) [Tech. Phys. Lett. 29, 666 
(2003)]. 

[2] S. Ya. Belomyttsev, A. A. Grishkov, S. D. 
Korovin, V. V. Ryzhov, Laser and Particle Beam, 
21/4, 561, (2003) 

[3] A. A. Grishkov,  S. Ya. Belomyttsev, S. D. 
Korovin, V. V. Ryzhov, Pis’ma Zh. Tekh. Fiz. 
29,22 (2003) [Tech. Phys. Lett. 29, 666 (2003)]. 

[4]  Ignatov A.M., Tarakanov V.P. Phys. Plasmas, 
Vol.1, №3, p. 741 (1994). 

[5]  N.F.Kovalev, M.I. Fuks, On the stationary states 
of thin-wall high-current relativistic electron 
beams, Preprint 13, Gorky (1980). 

[6]  L.D. Landau, E.M. Lifshitz, Classical Mechanics 
Nauka, Moscow, 1988. 

[7]  V.P. Tarakanov. User’s manual for code Karat. 
Berkley Research Associate. Inc, Springfield, VA 
(1992).  

Fig. 4. Period of the spatial density distribution of the
squeezed electron beam versus the relativistic factor
of electrons for the current κ  = κF. Solid curve stands
for the numerical solution of the equation with
specified boundary conditions and the dashed line for
the period calculated in the harmonic approximation.
× - calculations by the PIC code КАRАТ. Γ = 3. 
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Fig. 5. “Potential” functions of the electron beam for 
the currents κ = 0.866 and κ = 0.995 normalized to
2(Γ-1). 
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