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Abstract – Solutions of the problem concerning 
equilibrium configurations of an uncharged con-
ducting liquid jet in a transverse electric field have 
been obtained. These solutions correspond to cy-
lindrical jets with the cross section strongly de-
formed in the direction of field. The range of the 
electric field strength values is determined, where 
the stable configurations exist. The problem does 
not admit solutions for the field strengths above the 
threshold that corresponds to the jet splitting.  

1. Introduction 

In the absence of an external electric field, the only 
stable equilibrium jet configuration is a round cylin-
der. Let us consider a jet of conducting fluid in an 
electric field, which is oriented perpendicularly to the 
jet axis. Electrostatic force leads to the azimuthal de-
formation of the jet surface: its cross section will be 
stretched along the field. Compensation of the electro-
static forces by the surface tension will lead to a new 
equilibrium configuration of the jet surface.  

As is known, capillary forces (in the absence of 
electric fields) lead to the development of the so-
called Rayleigh instability of a round cylindrical jet, 
which is manifested by the growth of longitudinal 
perturbations with a characteristic wavelength exceed-
ing the circumference length [1]. Similar analysis of 
the stability of a jet placed into an electric field is hin-
dered by the fact that the unperturbed solution for the 
jet shape is unknown (it differs from the round cylin-
der). Therefore, the necessity arises to investigate pos-
sible equilibrium configurations of jets in a transverse 
electric field. Our aim is to find the equilibrium con-
figurations of a jet strongly deformed and to determine 
a range of electric field strength, where the solutions 
exist.  

Recently, an exact particular solution was found 
[2] for the special case where the difference of pres-
sures inside and outside the jet is zero. This solution 
corresponds to a jet strongly deformed, whereby the 
aspect ratio of the jet cross section (A) amount to 23/4. 
It should be noted that the similar solution was ob-

tained by McLeod [3] for a mathematically analogous 
problem of finding the shape of a two-dimensional gas 
bubble moving in the ideal liquid and then was studied 
in detail [4]. As was demonstrated in [2], this solution 
is unstable with respect to small azimuthal deforma-
tions for the jet shape and is of no physical interest 
(stable configurations correspond to deformations 
leading to the aspect ratios significantly below 23/4). 
Nevertheless, this solution can be useful in searching 
approximate solutions of the problem. It is related 
with our demands to the approximations of the surface 
shape. The solutions must be exact in two cases: the 
case, when an external field is absent (round jet, A =1) 
and the case, when a difference of the pressure at the 
jet boundary is zero (A=23/4). This condition allows 
us to construct "almost" exact interpolation solution 
for jet configurations in the range of 1< A < 23/4.  

2. Initial equations 

Let us assume that the jet cross section remains con-
stant and the fluid is in rest in the frame of reference 
moving with the jet (plane symmetry of the problem). 
Let us write the equations of electrostatics that de-
scribe a stationary profile of the uncharged surface of 
the conducting liquid jet in the transverse electric field 
of the strength E . The electric field potential ϕ  in the 
jet cross section plane { }x y,  is described by the two-
dimensional Laplace equation:  

0xx yyϕ ϕ+ = .  
This equation has to be solved together with the equi-
potentiality condition 0ϕ =  for the conductor surface. 
Another boundary condition corresponds to homoge-
neity of the electric field at infinity.  

2 2Ey x yϕ → − , + → ∞.                (1) 
The equilibrium relief of the surface of a conducting 
fluid is determined by the condition of balance for the 
forces acting on this charged surface:  

1 2
0(8 ) ( ) 0TK Pϕπ ϕ−

=∇ + + = ,                (2) 
where the first term describes the electrostatic pressure 
at the liquid boundary and the second term describes 
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the surface pressure ( T  is the surface tension coeffi-
cient and K  is the local curvature of the surface). For 
the surface given by the parametric expression  

( ) ( )y Y x Xτ τ= , = ,  
where τ  is a parameter (we will define it below), the 
curvature is determined by the expression  

2 2 3 2( )
X Y Y XK
X Y
τ ττ τ ττ

τ τ
/

−
= .

+
 

The constant P  gives a difference of pressures inside 
and outside the jet. In the absence of electric field, a 
jet has a round cross section and this parameter is 
given by the expression 0P P T Sπ= ≡ / , where S is a 
cross section area of the jet. A comparison of Eq.(1) 
with equations describing the shape of a gas bubble 
moving in the ideal liquid [3] shows that they coincide 
after the following substitutions:  

4 4E Vπρ ϕ πρ→ − , → Ψ,  
where V  is the velocity of liquid streamlining the 
bubble, ρ  is the density of this liquid, and Ψ  is the 
current function. Rewritten in terms of these variables, 
the balance condition for the forces acting on the sur-
face (2) becomes the stationary Bernoulli equation for 
the bubble surface, in which constant P  describes a 
difference between the pressure inside the bubble and 
the energy density in the liquid at infinity. The par-
ticular solution obtained by McLeod [3] corresponds 
to the case of 0P = . As applied to the problem of the 
jet geometry in electrical field, this solution is dis-
cussed in our paper [2].  

For convenience, we convert to the dimensionless 
variables  

2 2(4 ) (4 )x T E x y T E yπλ πλ→ / , → / ,  
2(4 ) ( (4 ))T E P E pϕ πλ ϕ πλ→ / , → / ,  

where λ  is a constant, the value of which we choose 
solving the problem.  

Let us introduce a so-called complex potential 
w iψ ϕ= − , which is an analytic function of the com-
plex variable z x iy= + . The function ψ  is conjugate 
harmonic function with the electric field potential ϕ ; 
the condition constψ =  defines the electric field 
lines. The potential w , as follows from (1), satisfies 
the condition at infinity  

w z z→ , | |→ ∞,  
and the balance condition for the forces acting on the 
jet surface (2) can be written as  

2

0
2

dw K p
dz

λ
+ + = .  

As the next step solving of our problem we deduce 
the conformal mapping the exterior of the jet to the 
exterior of the unit circle ( z ξ→ ). The problem of 
finding the complex potential under the condition 
Im 0w =  on an unknown surface ( )z Z τ= , where 

Z X iY= + , reduces to the problem with analogous 
condition on the unit circle 1ξ| |= . It is identical to 
the known problem of plane potential flow past a 
round cylinder in the incompressible fluid. The solu-
tion of the problem is given as  

1w ξ
ξ

= + .                               (3) 

Thus our problem reduces to finding an unknown ana-
lytic function ( )z z ξ= , which satisfies two condi-
tions:  

22 2

2 3

Re( )1 0 1
2

z z z
p

z z
ξξ ξ ξ

ξ ξ

ξλ ξ ξ
− + | || − |

− + = , | |= ,
| | | |

  (4) 

z ξ ξ→ , | |→ ∞.                       (5) 
Taking into consideration (5), z  should be expanded 
in the form  

1 2
3( ) a az ξ ξ

ξ ξ
= + + + ...  

The absence of even powers is connected with the 
problem symmetry.  

As is evident from [4], the substitution of such se-
ries to (4) leads to rather complicated relations, which 
are inconvenient to use. First of all this is related with 
the availability of fractional degrees 3 3 2( )z z zξ ξ ξ

/| | =  
in denominator of second term of equation (4). One 
way to get around this problem is to introduce a new 
function  

1 2
2 4( ) 1g i z iξ

α αξ ξ ξ
ξ ξ

⎛ ⎞
= = + + + ... ,⎜ ⎟

⎝ ⎠
        (6) 

2
1 1 2 2 12 3 2 8a a aα α= − / , = − / − / , ...  

Using ( )g ξ  we rewrite the boundary condition (4) in 
the following form:  

2 2 21 2Re( ) ( ) 0
2

gg p ggξ
λ ξ ξ−| − | − + = .        (7) 

It should be noted that a similar equation for a bubble 
in two-dimensional flow was obtained by Tanveer 
[5]).  

The circle 1ξ| |= , which corresponds to jet surface 
in the term of initial variables, can be parameterized as 

ie τξ = , where τ  is a real parameter. Then the jet sur-
face is given by the expression:  

( )iz z e Zτ τ⎛ ⎞
⎜ ⎟
⎝ ⎠

= ≡ ,  
where 0 2τ π≤ < . It is convenient also to introduce a 
complex function ( ) iG g e ττ ⎛ ⎞

⎜ ⎟
⎝ ⎠

≡ , which determines a 
value of the analytic function g at the boundary 

1ξ| |= . It is connected with the function Z by simple 

relation: ( )G dZ dτ τ= / . Using this function we re-
write Eq.(11) in the following form:  

2 2 22 ( ) ( ) 0
2

i ie e i GG G p GGGτ τ
ττ

λ −⎛ ⎞
⎜ ⎟
⎝ ⎠
− − + − + = .   (8) 

71

___________________________________________________________________________________________Poster Session



This equation with the fourth-order nonlinearity will 
be an object of our following consideration.  

3. The problem solutions 

In terms of the definition (6), the solution of equation 
(8) will have infinite series representation  

( )4 2 2 4
1 2( ) 1i i i iG e e eπ τ τ ττ α α/ + / − −= + + + ... .     (9) 

As noted above, two exact solutions are known for the 
discussed problem. The series is finite for the both 
solutions. Thus, for the jet of round cross section in 
the absent of electrical fields ( 1p =  and 0λ = ) we 
have  

 4 2( ) i iG e π ττ / + /= .                       (10) 
The other case exactly solved corresponds to 0p =  
and 2 3λ = / . For these parameter values the equation 
(8) is essentially simplified. It has become square-
nonlinear. As can be easily verified, the next expres-
sion will be its solution  

4 2 21( ) 1
3

i i iG e eπ τ ττ
⎛ ⎞

/ + / ⎜ − ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

= + .               (11) 

This particular solution, which corresponds to the 
strongly deformed jet, is unstable with respect to small 
azimuth perturbations [2].  

Possible stationary configurations of bubbles have 
been investigated in a range of values of the parame-
ters p  and λ  which are close to 1p =  and 0λ = , 
and also to 0p =  and 2 3λ = /  [4]. Asymptotic expan-
sions in the form of (9) in the neighborhood of the 
appropriate exact solutions have been constructed. 
Their analysis showed that the use of a sufficiently 
large number of terms in the expansion (9) permits to 
describe the surface configurations of the bubbles over 
a wide range of parameter values of the problem with 
a high accuracy. From our point of view, the main 
disadvantage of such expansions is that they cannot in 
principle include both known exact solutions (10) and 
(11). Moreover, the use of the complicated expres-
sions for jet configurations makes the analytic investi-
gation, in particular the investigation of their stability, 
much more difficult.  

Confining the number of terms of the series (9), 
and using no restrictions for values of the parameters 
p  and λ , we seek an approximate solution of the 

equation (8) in the following form: 
4 2 2( ) 1i i iG e eπ τ ττ α/ + / −⎛ ⎞

⎜ ⎟
⎝ ⎠

= + .                (12) 
In spite of its simple form, this representation allows 
to find an "almost" exact solution of the problem. The 
solution becomes exact at 0α =  and at 1 3α = / , 
where it coincides with (10) or (11). Of cause, one 
could seek the problem solution taking into account 
higher harmonics of the expansion (9). But all physi-
cal interesting solutions of the problem are found to 
lie in the interval 0 1 3α< < /  between two exact solu-
tions. This means that we construct the interpolated 

solution. As an error of interpolation is always less 
than an error of extrapolation, the expression (12) 
yields the sufficiently accurate approximation of the 
solution of Eq.(8).  

 
           α  
Fig. 1. The relative approximation error f  as a func-
tion of the parameter α  
 
Substituting the expression (12) into (8), we obtain:  
( ) ( )2 21 cos(2 ) 1 3 2 cos(2 ) 2 cos(4 )pλ τ α α τ α τ− − − − +  

( )2 2 2 2(1 ) 2 4 (1 )cos(2 ) 0p α α α α τ+ + + + + = .    (13) 
We will neglect the third term (that is, the fourth har-
monic) in this expression. Equating the coefficients 
for the identical harmonics we obtain the equations 
connecting parameters λ , p , and α : 

2 2 41 3 4 0p p pλ α α α− + + + + = ,  
22 2 (1 ) 0pλ α α α− / + + + = .  

Then the parameters λ  and p  can be expressed in 
terms of α :  

2

2 3 4

4

2 3 4

1 2 3( )
1 4 4 4

2 (3 5 )( )
1 4 4 4

p α αα
α α α α
α αλ α

α α α α

− −
= ,

+ + + +
−

= .
+ + + +

          (14) 

 

These relations, together with (12) give the desired 
approximate solution of the problem.  

Let us estimate the term, which was omitted. Its 
maximal value is seen to be equal to 22 pα . We can 
compare this term, for example, with the amplitude of 
the second harmonic, which is equal to λ  in the ex-
pression (13). Their quotient gives a relative approxi-
mation error f :  

2 2

4

2 ( ) (1 2 3 )( )
( ) 3 5

pf α α α α αα
λ α α

− −
= = .

−
 

 

As is obvious from the plot (Fig. 1), in the interval 
0 1 3α< < / , it is 0 03.  in maximum. We believe that 
this accuracy is sufficient to restrict ourselves by the 
representation (12) for the function G  for construct-
ing the equilibrium solutions for the jet configurations.  
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Fig. 2. The cross sections of the jet for (a) 0α = , (b) 

0 234α = . , (c) 1 3α = / , (d) 3 2 3α = − +  
 
 Let us find the surface configurations correspond-
ing to the expression (12). Since 2dZ d Gτ/ = , we ob-
tain by integration τ :  

2
3( ) 2

3
i i iZ e e eτ τ τατ α − −= − − .            (15) 

Separating real part from the imaginary one in equa-
tion ( )z Z τ= , we get the desired parametric expres-
sions for equilibrium surface: 

2

2

( ) (1 2 )cos( ) cos(3 )
3

( ) (1 2 )sin( ) sin(3 )
3

x X

y Y

ατ α τ τ

ατ α τ τ

= = − − ,

= = + + ,
 

where τ  changes in the range 0 2τ π≤ ≤ . The pa-
rameter α  satisfies the condition 0 3 2 3α≤ ≤ − + . 
Its maximal value corresponds to surface with self-
intersection (see Fig. 2); it can be found from the con-
dition 0Z = . The solutions have no physical meaning 
for the greater values of α .  

4. Conclusion  

In the present work, we have obtained the one-
parameter family of the approximate solutions of the 
classical problem in electrostatics, namely the problem 
of finding the equilibrium configuration of an un-
charged jet of a conducting liquid in the transversal 

electric field. The approach applied is based on the 
conformal mapping of the region outside of jet to the 
region outside of unit circle, which restricts the con-
figurations considered by us to the case of the plane 
symmetry of the problem. The solutions found corre-
spond to the azimuthal deformations of the jet surface 
under the action of electrostatic forces whereas longi-
tudinal deformations have not been considered. Our 
analysis allows us to define a threshold value of exter-
nal field,  

2 1 2
07 02 12 4 ,cE P TS − /≈ . ≈ .  

depending on the surface tension coefficient T  and 
the jet cross-section aria S (this value corresponds to 

0 234α ≈ . ). If the electric field strength exceeds its 
critical value, the equilibrium configurations of the jet 
surface do not exist and, consequently, the jet splits.  
 It can be noted that the investigation of possible 
instabilities of the jet in the external electric field re-
quires knowledge of its unperturbed configuration. In 
the case of a relatively small field, cE E , this con-
figuration is close to the round cylinder, and the 
analysis can be performed in the framework of the 
theory of perturbation with respect to small deforma-
tions of the round jet surface. For a sufficiently strong 
field equilibrium jet configuration differs from the 
cylinder with round cross-section and, for the stability 
analysis, it is necessary to use the solution that was 
obtained by nonperturbative methods. We have found 
the corresponding solutions in the present work. 
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