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Abstract - In the present work a method for calcu-
lation of emission spectra of atoms and ions in an 
alternating circular polarized electric field is pro-
posed. The method allows one to investigate the 
energy structure of spectra, transition probabili-
ties, and spectral line intensities depending on fre-
quency and strength of the electric field. As an il-
lustration, the emission spectrum of a helium atom 
is calculated at the electric field strength up to 
1kV/cm.  

1. Introduction 
An electric field is always present in plasma either as 
the external field maintaining a discharge or the inter-
nal one inside of a plasma micro-field formed by 
charged particles of plasma. The presence of this field 
leads not only to the Stark effect as such, but also to 
the fact that other atomic characteristics such as transi-
tion probabilities, lifetimes, and spectral line intensi-
ties show a dependence on changes in the parameters 
of the electric field.  

The most of experimental and theoretical methods 
of investigation into the influence of the electric field 
on emission of atoms and ions concern with the study 
of this influence on the energy structure of spectra 
alone.  As to transition probabilities, lifetimes, and 
spectral line intensities of emission spectra, theoretical 
methods for calculation of these characteristics are 
elaborated mainly for the static or quasi-static electric 
fields. The calculation methods for the static electric 
field are well developed for hydrogen-like and helium 
atoms (see [1,2] and references therein) in the electric 
field, however, these methods are not suitable for 
other atoms. A comprehensive study of transition 
probabilities and spectral line intensities was per-
formed for rare gas atoms in the static electric field 
[3]. It should be noted that modern computers allow 
calculation of transition probabilities, it is though 
complicated but solvable problem. However, in calcu-
lating spectral line intensities essential difficulties 
arise. This is connected with the necessity of calcula-
tion of level populations, electron temperatures, and 
so on. In the case of LTE-plasma or under condition 
of the Boltzman excitation source, the calculation of 
the level populations is relatively not complicated, 
hence the calculation of spectral line intensities is 
greatly simplified [4].    

In the case of the alternating electric field, theo-
retical methods of calculation of the Stark effect are 

well developed (see [5-7] and references therein). 
However, the calculation methods for transition prob-
abilities are elaborated much worse than for the case 
of the static electric field, and they can be applied only 
under great limitations and simplifications. A general 
method for calculation of spontaneous transition prob-
abilities for atoms and ions in the external circular 
polarized electric field was suggested in [8].  

Some problems arise in calculation of the intensity 
of emission spectrum of atoms and ions in the alter-
nating electric field. This is due to the fact that the 
transition probabilities and lifetimes depend on the 
frequency and strength of the electric field, and level 
populations are determined by the mechanism of dis-
charge excitation. Thus, the calculation of spectral line 
intensities represents a set of problems, and each prob-
lem needs an adequate choice of a theoretical model 
and time-consuming computation.  Nowadays few 
calculations of spectral line intensities in plasma were 
performed, for example, in [9]. However, in view of 
the complexity of this problem, systematic calcula-
tions of intensities of emission spectra for atoms and 
ions in plasma, especially in nonequilibrium plasma, 
are absent.  

In the present work, a method for calculation of 
the intensity of emission spectra for atoms and ions in 
the alternating circular polarized electric field is sug-
gested. The electric fields of such polarization are 
observed both in high-frequency discharges [10] and 
under laser excitation [11]. The proposed method al-
lows to us to investigate the dependence of transition 
probabilities and spectral line intensities on frequency 
and strength of the electric field.  

2. Calculation method 

In a circular polarized electric field, a non-stationary 
Schrödinger equation is written as  
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where nψ  is the wave function of the n-th state of a 

system, )(0 rH  is the unperturbed Hamiltonian, and 
the operator )sincos( tytxeF ω±ω−  describes per-
turbation induced by the interaction of an atom with a 
circular polarized field of frequency ω and strength F. 
The «+» and «–» signs correspond to the right and left 
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polarization of the field, respectively. To go to a sta-
tionary Schrödinger equation, let us use the rotating-
wave approximation [12]. 

In order to go to a rotating coordinate system rotat-
ing around the Z-axis with the frequency ω, let us in-
troduce a wave function in this coordinate system 

),()exp(),( trJtitr z ψω=ϕ  ,                (2) 

where zJ  is the z-component of the total angular 
momentum operator. After substitution of the wave 
function (2) in Eq. (1), we get 
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As seen from Eq. (3), the operator Q  is time-
independent. Hence, in the rotating-wave approxima-
tion, it is possible to go from the non-stationary 
Schrödinger equation (1) to the stationary one, and we 
get 

)()( rrQ εϕ=ϕ                               (4) 
whence  

)()exp(),( rtitr ϕε−=ϕ                         (5) 

The operator Q  is the operator of the energy of an 
atom in an electric field, and ε and ),( trϕ  are the en-
ergy and wave function of the atom in the electric 
field in the rotating coordinate system.  

It was shown in [7] that the wave functions and 
energies of the atom, being the solutions to the 
Schrödinger equation (4), can be found from the di-
agonalization of the Q  matrix. This matrix is obtained 
in the representation of the unperturbed wave func-
tions )0(

nϕ  calculated in the absence of external electric 
field. In this representation, the matrix elements of the 
energy operator Q  are written as 
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where )0(
nE  is the energy of the n-th state of an atom 

in the absence of external electric field, F and ω are 
the strength and frequency of the external electric field 
and xD  is the x-component of the dipole transition 
operator. 

The diagonalization of the energy matrix with 
elements (6) gives a set of wave functions and the 
energy spectrum for the n-states of the atom in the 
electric field. Upon diagonalization of the Q  matrix, 
we get the energies nε  and wave functions as 
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for the n states of the atom in the external electric field 
in the rotating coordinate system. The coefficients Cnk 
in the wave function (7) depend on the frequency and 

strength of the external electric field.  To find the av-
erage energies of the atom in the initial coordinate 
system, it is necessary to perform averaging over the 
oscillation period. Upon averaging, the average energy 
of the system in the electric field in the initial coordi-
nate system is written in the following form 
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It follows from Eq. (8) that nE  is time-independent. 
The matrix elements of the Dx operator are calcu-

lated as follows: 
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the reduced matrix elements >′γ′γ< JDJ  are calcu-
lated depending on a coupling scheme. Details of cal-
culation of these matrix elements are represented in 
[8,13].  

The wave functions and energies derived 
from the diagonalization of the Q  matrix are used for 
the calculation of the probabilities of spontaneous 
atomic transitions in the electric field. In the dipole 
approximation, the probability of spontaneous radia-
tion of a photon to an element of the space angle dΩ 
from the |n> state to the |m> state with the polarization 
eq is determined by the formula 
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where ω is the transition frequency, ∑−=
i

e irD  is 

the dipole momentum of an atom, and Ψn and Ψm are 
the wave functions of the n-th and m-th states of the 
atom in the external electric field. Based on Eq. (10), 
the total transition probability for a radiation polarized 
with respect to the eq direction and averaged over all 
possible orientations in space of the vector D is calcu-
lated using the formula  
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where Dq are the cyclic components of the vector D. 
The wave functions Ψn are determined from the di-
agonalization of the Q  matrix with the matrix ele-
ments (6). On substituting the wave functions Ψn and 
Ψm to Eq. (11) and using the Wigner–Eckart theorem, 
the expression for the probability of the JM→J′M′ 
transition between magnetic energy sublevels becomes 
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where )JM(
iC and )MJ(

jC ′′  are the expansion coeffi-
cients of the wave functions for an atom in the electric 
field in terms of the unperturbed wave functions 

)MJ( iii
)(

i γϕ 0 and ωJM,J′M′  is the frequency of the 
MJJM ′′→ transition. The probabilities for the J→J′ 

transitions between energy levels are calculated using 
formula 

∑
′

′′→
+

=′→
MM

)MJJM(A
J

)JJ(A
12

1
.    (13) 

An absolute intensity of the Stark level in the 
emission spectrum is determined by expression  

MJJMJM MJJMANMJJMI ′′′′→=′′→ ,)()( ω , (14) 
where NJM is the population of magnetic sublevel and 
A(JM→ J′M′) is the transition probability from Eq. 
(12). So, for calculation of spectral line intensities for 
an atom in the electric field it is necessary to know the 
populations of magnetic sublevels. For plasma in 
thermodynamic equilibrium, the level populations are 
estimated from the Boltzman distribution.  In the case 
of nonequilibrium emission spectra for estimation of 
the character of level populations of atoms in the elec-
tric field, one can use the static and dynamic approxi-
mations proposed in [2,14]. In the static approxima-
tion, it is assumed that the same number of atoms is 
situated at each magnetic sublevel on the average over 
time, and we have   

)12( += JNN JMJ .                       (15) 
In the dynamic approximation, it is assumed that the 
same number of atoms get to each Stark sublevel per 
unit of time, in this case, the population NJ is propor-
tional to the lifetime of state [14] 

)(0 JMNN J τ= .                      (16) 
The dynamic approximation gives good agreement 
with the experimental data at pressure up to 10-4Torr, 
while the static approximation allows us to obtain sat-
isfactory results from the pressure 10-2Torr. In a high-
frequency discharge where small pressure ~2Torr is 
observed, the assumption on uniform population of 
magnetic sublevels (15) is quite justified. The popula-
tions of the Stark levels can be obtained from the 
population density balance equations. A computer 
code for solving these equations was written within of 
the given INTAS project by N. Denisova [15].  

3. Results and discussion 

As an illustration, the method considered in section 2 
was applied to the calculation of the dynamic Stark 
effect, transition probabilities and intensity of emis-
sion spectrum for a He atom. This atom was exposed 

to the circular polarized electric field of frequency 
ω=100MHz and strength up to 1kV/cm. The calcula-
tions were carried out with the LS-coupling scheme, 
and ns-, np-, nd- and nf-states with the main quantum 
number n up to 10 were taken into account. In calcu-
lating the energy matrix of the He atom in the electric 
field 115 energy levels (501 magnetic sublevels) were 
included. The dependence of the shift and splitting of 
spectral lines of the foregoing atom on the strength of 
the electric field is shown in Fig.1. 
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Fig.1. Dependence of the Stark effect on the electric 
field strength for the 81P1–21S0 spectral line, 
λ=329.772nm 

 
The distribution of transition probabilities for the 

np1P1-2s1S0 and nd3D1-2p3P0 spectral lines for the He 
atom is plotted in Fig.2. In this figure the quantity 
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Fig.2. Dependence of the transition probabilities on 
the electric field strength 
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AJJ′/A0 is the relation of the transition probabilities AJJ′ 
to the probability A0, where A0 is the transition prob-
ability of the considered transition in the absence of 
the electric field. Fig. 2 shows that all transition prob-
abilities decrease with an increase in the strength of 
the electric field.   

Further, Fig. 3 shows that there is some anisotropy 
of the transition probabilities for the He atom.  
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Fig.3. Anisotropy of the transition probabilities for the 
He atom 

 
It follows from an analysis of the wave functions 

that this anisotropy is induced by an interaction be-
tween magnetic sublevels because the electric field 
mixes energy levels. Fig. 4 shows behaviour of the 
spectral line intensities depending on the electric field 
strength.  

As seen from this figure, intensities of the consid-
ered spectral lines decrease with an increase in the 
electric field strength.  

4. Conclusions 

Suggested in the present work method allows us to 
calculate spectra of atoms and ions in the circular po-
larized electric field with frequency lying in the range 
from radio- up to optical frequencies and at electric 
field strength changing into wide range. Obtained 
from these calculations regularities can be used both 
for the purposes of modeling of processes taking place 
in plasma and for plasma diagnostics.  
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Fig.4. Dependence of the spectral line intensities on 
the electric field strength 
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