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Abstract – The problem of calculation of charged-
particle beam parameters after transit through an 
orifice, intercepting part of the beam is considered. 
A calculation method using an application of the 
phase-density formalism and relating characteris-
tics of the having passed beam to its structure at 
the starting section is proposed. Important beam 
parameters such as radial distribution of density 
and shape of the envelope are calculated. The cases 
of beam transportation in free space (an analog of 
propagation of neutral particles beam) and in uni-
form magnetic field have been demonstrated by 
examples of model phase densities. 

1. Introduction 

Transportation of charged-particles beams in techno-
logical facilities is, as a rule, described by their enve-
lopes. “Emittance diagrams” that are projections of the 
beam phase density in the phase plane, have been of 
widespread occurrence in the envelope method [1-4]. 
According to the Liouvill theorem, the area of the dia-
gram (or emittance) is an invariant of ensemble of 
particles in their motion in medium without collisions. 
The most simplicity and clearness are inherent in 
models describing the beam transportation in the par-
axial approximation, if the emittance diagram has the 
form of centrally symmetric ellipse in phase coordi-
nates ',rr . The beam propagation is attended with 
deformation of the emittance diagram without varia-
tion in its ellipticity and area. 

The beam emittance remains invariable with coor-
dinated transportation through a system of channels. 

The pattern of transportation becomes more com-
plicated if a partial interception of the beam with 
channels walls takes place. An essential beam orific-
ing occurs e.g. in devices of concentrated-electron-
beam extraction to a dense gaseous medium [5,6]. 
Minimization of gas inflow thereto from the environ-
ment is realized by direct beam burning-through of a 
number of membranes. Naturally such a method for 
transportation is accompanied with losses of periph-
eral particles of the beam, the emittance stops being an 
invariant. Each membrane burnt-through changes the 
beam phase diagram and because of this the next 
membrane is burnt through by the beam with a 
changed distribution of power density. 

This work has to do with the method proposed for 
description of propagation of the axially symmetric 

beam of charged particles, that allows the effect of 
beam orificing to be taken into account. The method is 
based on using the three-dimensional phase density 

),',( ϕrrf  being, in point of fact, an analog of lumi-
nance [7]. Here, r  – radial coordinate,  'r  and ϕ  – 
tangents of slopes of particle trajectories in radial and 
azimuth directions, respectively. It should be noted the 
consideration of the dispersion of the azimuth slope 
removes peculiarities on the axis of the axially sym-
metric beam, favours adequate description, in particu-
lar, gives an insight into a diffusion of orificed beam 
limits. The description is made in cylindric coordi-
nates. 

2. Model of propagation of the orificed beam 

Let the phase density of charged particles be equal  
),',( 000 ϕrrf  in the orificing plane 0)=(z . Here in-

dex “0” refers to phase coordinates in the reference 
plane. The number of particles escaping from an ele-
mentary area per unit of time,  000 θddrr  (s. the figure) 
into the range from '0r  to '' 00 drr +  and from 0ϕ  to 

00 ϕϕ d+ , is equal to θϕϕ ddrrddrrrf 0000000 '),',( . 

 
Generally, trajectories of particles, have the form: 
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where θ  – the azimuth coordinate of particle. 
At the section z  the particles mentioned fall onto 

the elementary area dS  defined by the Jacobian of 
conversion (1) 00 '= ϕdJdrdS ,  where 
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If one succeeds to express 00 ,' ϕr  has functions of 
θ,, 0rr , from Eq. (1), the second derivative of the cur-

rent density at the section z  equals: 
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This relationship establishes a correlation between 
the phase density of the flow in the reference plane 
and beam parameters at the arbitrary section. Integrat-
ing over the variables 0r  and θ  at the surface 0S , 
located in the plane 0=z  and transmitting electrons, 
we obtain the current density in the plane z : 

,=),( 2

0
jdzrj

S∫  

where in the general case 0S  may have any form (sec-
tor, segment, concentric slots etc.). 

Further, the research is restricted to solid axially 
symmetric beams, therefore 
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where b  – the radius of the orifice aperture. 
The proposed calculation algorithm allows deter-

mining the distribution of the current density at the 
section z  by beam parameters in the referent plane at 
known trajectories of electrons. The beam envelope 

)(zR  can be also found from the condition: 
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signifying that within a volume restricted to the sur-
face of revolution )(zR , the particle beam is constant 
and equals to Iκ , where I – the total current, 1≤κ . 

Obviously, this will be a family of envelops differ-
ing in the magnitude κ . It should be noted an enve-
lope is a descriptive characteristic of the beam, how-
ever, for calculation of membranes burning through, 
the knowledge of the flow power density determined 
by the current density (4) is more important. 

 Let’s consider the method by examples of beams 
with model phase densities, propagating in free space 
and uniform magnetic field, where the trajectory equa-
tions have the simplest form. The statement of the 
example pursuens the twofold goal – on the one hand, 
to demonstrate potentialities of the method, on the 
other – to present examples for testing of mathemati-
cal programs, describing the transportation in more 
complex cases. 

3. The beam in free space 

A trajectory of particle in free space in a system of 
cylindric coordinates is described by a set of equations 
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with the Jacobian 
 .= 2zJ              (7)  

Here the reference of the azimuth coordinate θ  is 
made relative to the position 0=θ  at 0=z . Finding 
from Eq. (6) 
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and substituting them into Eq.(3), one can obtain in 
terms of (7): 
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Further, with the aid of Eq. (4) and (5), the distribu-
tion of the current density and the beam envelope are 
calculated. 

Let’s consider the model phase density 
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where b – the radius of the orifice aperture, σ  and 
a  – angular and spatial dispersions of beam, respec-
tively. 

Then Eq. (3) and (4) take the form: 
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where 
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 The total current ( )22222 /1ln= abaI +σπ , the 
beam envelope 
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where 22/1= ab+η  . 
Specifically, with ∞→a  (which signifies that at 

the starting section the current density is uniform on 
a radius) Eq. (12) and (13) are simplified: 
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The expressions (12) and (14) account for a jump-
like variation in the current density at the edge of the 
orifice aperture at 0=z . However, already for the 
small z  the jump-like character disappears, and j  
differs from zero with as one likes large  r . The beam 
has no sharp boundaries even near the orifice. The fact 
that the envelopes are a family of hyperbolas for any 
orifice draws our attention. This is a feature of the 
distribution (10). For other phase densities (e.g. ap-
propriate for tubular beams) the envelopes have a 
more complicated form. 
 

4. The beam in the uniform magnetic field 

The radial and azimuth coordinates in the uniform 
magnetic field follow the law: 
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where 
z0mV

qBK
2

= , q , m  – the charge and mass of 

particle, respectively, B  – the magnetic induction, 
0zV – the longitudinal component of the particle veloc-

ity, taken as being constant. 
 The Jacobian of the conversion (16) equals 
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Finding '0r  and 0ϕ  from Eq. (16) and substituting 
it in Eq. (3), we obtain 
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As an example, we will consider the flow with the 

phase density at the starting section: 
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to which Eq.(10) corresponds at ∞→a . Then from 
Eq. (18) we have 
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and after integration with respect to θ  and 0r  we will 
obtain: 
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The total current equals 222= σπ bI , and the enve-
lope has the form: 
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It is not difficult to see that at 0→K  (no magnetic 
field) Eq. (21) and (22) turn into Eq. (14) and (15), 
respectively. 

As one would expect, beam parameters are re-
peated with a periodicity Kz /= π . The envelope is a 
sinusoid biased along the axis r  with bRmin κ=  and 
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 Thus, the method allowing it to calculate parame-
ters of the axially symmetric beam (spatial distribution 
of the current density, beam envelope) from a known 
phase density in the orificing plane has been stated. 
The method’s capabilities of calculation of beam 
transportation in free space and uniform magnetic 
field have been demonstrated. The examples given 
may be used for testing of numerical programs at the 
stage of adjustment. The constancy of a total current 
between membranes can serve as an extra criterion of 
the program’s validity. 

 In closing a few remarks should be made. The 
method’s capabilities are somewhat wider than those 
presented in the work. Actually, apertures in the ori-
fice, as mentioned above, may have an arbitrary form. 
Thereat, the problem may prove to be not axially 
symmetric, which, however, has no effect on capabili-
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ties of numerical methods of calculation. 
Apart from the above statement of the problem, an 

inverse statement is also possible: to reconstruct the 
phase density of the beam in the starting plane from 
results of membranes burning-through. But it is an-
other, more complicated problem not considered here. 
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