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Abstract – The Load Current Multiplier (LCM) 
concept was proposed to increase the energy trans-
fer efficiency into pulse-power loads [1]. Using the 
analytical approach suggested in [1], we define a 
dynamic current multiplier configuration (DCM) 
allowing also power increase in the circuit. The 
parameters of multiplier dynamically vary in time 
in this concept. This allows current pulse sharpen-
ing through rapid transfer of the stored magnetic 
flux to load. DCM is shown to provide theoretically 
higher load power than in other considered 
schemes and it is potentially applicable at existing 
and future multi-MA generators. 

1. Introduction 

Modern high energy density physics applications re-
quire energy release times essentially less than one 
microsecond. On the other hand, pulse-power capaci-
tors allow easier generation of MA currents, I0, with 
microsecond rise-times, t0 [2, 3]. The minimum t0 and 
maximum I0 values are usually restricted by irreduci-
ble inductances in the generator circuit. As an exam-
ple, consider simple discharge of a capacitor, C, 
through the inductance, L0, and through an inductive 
load Ld. If resistive losses are neglected, I0 and t0 are 

( )0 0 0 dI U C L L= + , ( )0 0 2dt C L Lπ= +     (1) 
where U0 is the initial capacitor voltage. The mini-
mum L0 value is limited in practice by the electrical or 
magnetic insulation strength. Eq. (1) thus typically 
results in t0 ≥ 1 µs for direct load-to-generator connec-
tion [2, 3] (direct drive). Sharpening of the current 
pulse requires partial conversion of the maximum 
stored magnetic energy in L0 into electric energy. The 
energy transformation supporting the power flux to 
the load can be controlled by a variable resistor or 
inductor connected in parallel to Ld. This electric-to-
magnetic-to-electromagnetic conversion represents 
essential part of power conditioning in IES systems.  

2. Power conditioning 

For example, consider a plasma armature motion cor-
responding to increasing inductance Lu(t) of an inter-
mediate storage volume loaded by generator [4]. The 
capacitor is first discharged through inductance (L0 + 
Lu) and Ld is not connected until the current reaches 
its maximum value Ig at t = tg. Let the inductance in-

stantaneously change at this moment from Lu to M and 
connect the load in parallel to Lu. The charge and 
magnetic flux conservations imply the change of cur-
rents [4] (resistive losses will further be always ne-
glected), 

( )0 0

,
u g g u

u g u d d g u d

L L I L J MJ
L I MJ L J J J J

+ = +

= − = +
  (2) 

where Jg, Ju, and Jd are new generator, inductive vol-
ume and load current values accordingly. We normal-
ize inductances to the generator inductance value in-
troducing u ≡ Lu/L0, x ≡ M/L0, d ≡ Ld/L0 and we de-
fine the load current multiplication coefficient, κ ≡ 
Jd/I0, I0 is taken from Eq. (1). Eq. (2) yields 
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where τ is the capacitor discharge time normalized to 
t0 from Eq. (1). In its turn, the load current rise-time is 
fully defined by the time, Δt, of Lu-to-M variation 
assumed to be faster than the capacitor discharge. The 
d(LuIu)/dt term creates the energy flux and load power 
multiplication with respect to direct drive.  
 The energy transfer coefficient can be defined as η 
≡ LdJd

2/CU0
2 = k2d/(1 + d). In the above, we define the 

load as a small volume with high magnetic energy 
density and low inductance Ld. At least during a por-
tion of the current rise-time, the inequality Ld << L0 (d 
<< 1) is satisfied in many examples from pulse-power 
physics [1]. As a result, the load magnetic energy is a 
small fraction of the total available magnetic energy in 
both cases, (1) and (3). 

3. LCM 

Reference [1] introduces the concept of the Load Cur-
rent Multiplier (LCM) capable to improve the genera-
tor-to-load energy coupling in direct-drive configura-
tions with d << 1. The scheme suggested in [1] is 
shown in Fig. 1 in its simples configuration, N = 2. 
Assume the load inductance Ld and the coupled and 
uncoupled inductances, Lc and Lu in Fig. 1 are con-
stant and the switch S is closed. The magnetic flux Ψ 
is provided by a capacitor C. According to the analysis 
of [1], the charge and magnetic flux conservations 
imply 

232

___________________________________________________________________________________________Pulsed power technology



0

0
2

g u g c c d d

c c d d

c g d

L I L I L I L I
L I L I
I I I

Ψ = + + +

− =
= −

  (4) 

 Or, introducing normalized inductances as above 
with c ≡ Lc/L0, and considering the coefficient κ = Id/I0 
at maximum load current, we get from (4): 
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( )
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  (5) 

 An ideal LCM (u << 1 << c) would provide better 
energy transfer to load without increasing the current 
rise-time very much if compared to direct-drive con-
nection when d << 1. This scheme property was ex-
perimentally confirmed for constant-inductance loads 
[1]. However, while increasing indirectly the load 
power through current increase, multiplier does not 
shorten the load current rise-time. 

4. Dynamic current multiplier 

Now assume that the values characterizing the mul-
tiplier in the rhs of Eq. (4), Lu and Lc, one of them 
or both may vary in time. Indeed, the tori in Fig. 1 
connected in parallel to the load represent an inter-
mediate energy and magnetic flux storage. Dynamic 
change of these values, or introduction of varying 
resistances in the scheme would possibly lead to the 
flux ousting to the secondary with sharpening of the 
load current pulse. Therefore, in this paper we try to 
respond the question: How variation of multiplier pa-
rameters will change magnetic flux distribution be-
tween the storage and the load volumes? In particular, 
the consideration might be similar to that of system 
(2). Below we introduce three possible configurations 
of a Dynamic Current Multiplier (DCM). 
 

 
Fig. 1. Cylindrical LCM from [1], N = 2. Concentric 
tori are connected to generator through convolute D. S 
is a closing switch connecting load to the tori. Genera-
tor current Ig splits into surface currents Ic, Id. 
 

4.1. DCM1 
 
The switch S in Fig. 1 is open until the capacitor dis-
charge current reaches its maximum value Ig at t = tg. 
The flux supplied by C and the discharge time are  

( ) ( )
0 2

2 , 1 4 1

g u g c c

c g

L I L I L I

I I u c dτ

Ψ = + +

= = + + +
  (6) 

where τ is defined as in (3) and (5). 
 Further, the load is connected and the inductance 
Lu changes to the value M, both events occur instanta-
neously and at the same time t = tg. Similarly to Eq. 
(2), the magnetic flux is conserved ad the new current 
values J are 

( )0 04 2
, 2

u c g g g c c

c c c c d d c d g

L L L I L J MJ L J
L I L J L J J J J

+ + = + +

= − + =
 (7) 

 This describes current interruption in the primary 
and its transfer to the connected secondary. The sys-
tem was studied in [5] for the case of dielectric-
insulated transformers (a solid fuse used for flux redis-
tribution). For k ≡⏐Jd/I0⏐ we have 

( )
( ) ( )

2 1
1 4 1 1 4

c x u d
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κ
− +

=
+ + + + + +

 (8) 

 At a fixed x, κ → 0 both for c → 0 and c → ∞. 
The maximum κ corresponds to some optimum cou-
pled inductance value, copt(x), given by the expression 
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+ +⎝ ⎠
 (9) 

 The load current can be further increased if we 
short-circuit the generator, L0, simulataneously with 
the above-considered events (“1 + x” should be simply 
replaced by “x” in Eq. (8)). In this case, we have  

( )
( )

( )

2 1
4 1 4

2 4

c x u d
c x d xd u c

xd x d

κ

α

− +
=

+ + + +

= +

  (10) 

 For the vacuum multiplier configuration of [1], 
this improvement was considered in [6]. We note a 
higher magnetic flux transfer in Eq. (10) than in (8), 
but at a more strict requirements on the power multi-
plication element, x >> 4d in Eqs. (8) and (10). Fig. 2 
compares the inductive storage times and the current 
transfer coefficients for the described configuration, 
DCM1, and for those of Eqs. (3) and (5) (κ = τ ≡ 1 for 
direct drive). The energy transfer efficiencies can al-
ways be found as η = k2d/(1 + d). It can be seen that at 
a reasonable value of x, x = 1, the DCM1(b) scheme 
(L0 is cut from the rest of the circuit) corresponds to κ 
< 1, but to higher κ values than DCM1(a), and to the 
same k as in the inductive scheme of Eq. (2). Substan-
tial advantage with respect to Eq. (2) is achievable 
only for larger x or/and smaller d and u than those 
considered.  
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Fig. 2. Comparison of κ (thick lines) and τ (thin lines) 
for inductive switch (IS), LCM and DCM1 ((a) from 
Eq. (8) and (b) from Eq. (10)) for d = u = 1/10: c = x 
for LCM, Eq. (5), and c = copt(x) for DCM1. 
 
4.2. DCM2 
 
We continue our study by considering that the coupled 
inductance of the multiplier in Fig. 1 is varying in 
time from a small value Lc to a large value M. The 
capacitor discharge and the moment of maximum gen-
erator current tg are still defined by Eq. (6). Further 
fast Lc change and corresponding flux redistribution 
are described by system (7) with the first equation 
replaced by that of Eq. (11) and the current multiplica-
tion becomes 

( ) ( )
( ) ( )

0 02 2

2 1 1
1 4 1 4

g u g c c g u g cL I L I L I L J L J MJ

u x c d
u x d xd u c

κ

+ + = + +

+ − +
=

+ + + + +

 (11) 

where the normalized inductances d, c, u, and x are 
defined as for Eqs. (3, 5). If compared to the result of 
Eqs. (8, 10), the requirements on the power multipli-
cation element are relaxed here (x >> d is necessary 
for ideal operation, instead of x >> 4d). Coefficient κ 
has a maximum at some u = uopt(x) 

( ) ( )1 1 16 1, 2optu c xd x dα α α= + + − ≡ +   (12) 

which must be positive.  
 As the inductances Lu and Lc are small in the con-
sidered configuration, the energy in intermediate stor-
age is also small and the primary storage inductance 
L0 should be kept in the circuit during power multipli-
cation and energy transfer to the load.  
 
4.3. DCM3 
Consider now that both Lc and Lu are varying in time 
and they obey Lc(t) + Lu(t) = const. Thus, at t = tg, the 
coupled inductance in Fig. 1 instantaneously changes  
 
 

from Lc to Lc + M and the uncoupled one from Lu + M 
to Lu. The capacitor discharge will be described by 

( )
( ) ( )

0 2

2 , 1 4 1

g u g c c

c g

L I L M I L I

I I u x c dτ

Ψ = + + +

= = + + + +
 (13) 

 Again, only the first equation of (7) is modified 
when considering magnetic flux conservation after Ld 
connection and Lu and Ld change. Thus, we have:  
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 (14) 

 
Fig. 3. Load current multiplication κ (thick lines) al-
lowed by magnetic flux conservation and τ values 
(thin lines) for d = 1/10: DCM1(b) (Fig. 2, u = 1/10, c 
= copt), DCM2 (Eq. (11), c = 1/20, u = uopt) and DCM3 
((a) from Eq. (14) and (b) from Eq. (15), u = 1/10, c = 
1/20). 
 
 Now the intermediate stored energy is substantial 
and for L0 cut-off, in analogy with Eq. (10) we thus 
have 

( )
( ) ( )

2 1
4

x u c x
u c x d c x d

κ
τ

+ +
=

+ + + +
  (15) 

 Analytical efficiencies for the described DCM 
schemes are compared in Fig. 3. If the magnetic en-
ergy storage time τ is not constrained, the best opera-
tion is demonstrated by the DCM3 configuration (τ = 
1.45 at x = 1 and (a) κ = 1.76, (b) κ = 2.97). Surpris-
ingly, Eqs. (14, 15) formally yield κ ∝ x1/2 at x → ∞. 
In practice, however, if no external energy is supplied 
the load current is limited by the energy conservation 
in the system. We postpone this discussion to else-
where and note only that for the parameters of Fig. 3 
and for the conservative system of Figs. 4, 5 below, 
the DCM3 design corresponds to (a) kmax ≈ 1.32, (b) 
kmax ≈ 1.53. 
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5. Example of applications 

 
Fig. 4. Example of DCM geometry with closing 
switches, S, F, and a hollow cylindrical conductor 
providing Lu and Lc variation. The armature P is mag-
netically accelerated towards the wall W (conducting 
for DCM2 or dielectric for DCM3).  
 
Fig. 4 presents an example of concrete experimental 
arrangement for DCM2 and DCM3 configurations. 
The corresponding circuit equations are further de-
rived from (11) and (14) and completed by the equa-
tion of motion for a perfectly conducting, infinitively 
thin, microsecond-compression [2, 3] cylindrical con-
ductor P in Fig. 4. We fix the circuit parameters to C = 
7.4 µF, U0 = 0.6 MV, L0 = 50 nH (t0 = 1 µs and I0 ≈ 7 
MA), and Ld = Lu = 5 nH, Lu = 2.5 nH.  

 
Fig. 5. Numerical result for DCM configuration of 
Fig. 4. The currents of multiplier, Ic, and load, Id, are 
compared to direct-drive current I0 (d, u, and c are the 
same as in Fig. 3).  
 
 The conductor P has the height and initial radius 
both equal to 10 cm and a ten-fold compression is 

assumed. The shell mass was chosen to have implo-
sion at t = 1 µs and it was equal to 19 mg for DCM2 
and to 6 mg for DCM3. The load was connected at t = 
0.8 µs in all cases, L0 cut-off occurred at t = 0.9 ns for 
DCM3(b). The load current rise-time was constrained 
by 250 ns.  
 Fig. 5 shows numerical solutions for the design of 
Fig. 4 and illustrates substantial load power multipli-
cation with load current amplification if compared to 
direct drive. Practical limitation on κ is defined by 
partial magnetic-to-kinetic energy transfer in this con-
figuration and by possible conductor bouncing when 
the accelerating magnetic force changes direction. 

4. Conclusion 

In conclusion, we described a possible approach to 
vacuum power multiplication in IES systems. The 
concept assumes dynamic variation of proper charac-
teristics of the vacuum current multiplier suggested in 
[1]. Analytical and numerical results for the intro-
duced Dynamic Current Multiplier schemes show 
benefits of its usage with respect to direct-drive, or to 
conventional schemes with opening switches. DCM 
for N = 2 is considered, but the scheme properties 
stand for N > 2 too. We note also that our main con-
clusions remain valid for the design of Fig. 1 if flux 
redistribution is organized in a different way than that 
of Figs. (4, 5). For example, a ferromagnetic open-
ing/closing switch may be used instead of moving 
conductor, or a resistive opening switch having resis-
tance R ~ M/Δt would also ensure good DCM opera-
tion. Externally controlled inductive variations with 
additional energy supply in the scheme would provide, 
according to Fig. 3, further increase of the load power.  
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