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In the paper the task of amplitude maximization 
of an arbitrary antenna nonstationary field was 
considered. Comparisons of experimental and 
calculated results for different types of ultrawide-
band antennas were made.  

 
Different aspects of the task concerning ampli-

tude maximization of an arbitrary antenna nonsta-
tionary field at the given moment of time and in the 
given far-field observation point were considered in 
the paper both theoretically and experimentally. It is 
supposed that the maximum linear antenna dimen-
sion is such that it is completely located inside the 
imaginary sphere of the radius a. Antenna excitation 
is realized by a pulse with the limited frequency 
band and it is supposed that the input energy W is 
completely radiated by the antenna. It is well known 
[1] that the antenna field outside such sphere (for 
monochromatic radiation mode) can be presented as 
multipole expansions. Coefficients of these expan-
sions are determined by the character of density dis-
tributions of electric and magnetic currents in the 
sphere volume. For this purpose it is convenient to  
 

use [1] the following concepts for the radial compo-
nents of electric Ar(r,θ,φ) and magnetic Fr(r,θ,φ) 
vector potentials that are solely different from zero: 
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where r,θ,φ are the spherical coordinates of the ob-
servation point, hn(kr) are Hankel spherical functions 
of the second type in Debye definition, k is the wave 
number, )(cosθm

nP  are Legendre associated func-
tions, coefficients amn, bmn  are the frequency func-
tions not depending on the observation point posi-
tion, αmn, βmn are the constants determining polariza-
tion of radiation; time dependence looks like 
exp(jωt). 

Electromagnetic field components that are trans-
verse relative to the radial direction and necessary in 
the subsequent analysis, being expressed through the 
potentials Ar(r,θ,φ), Fr(r,θ,φ), have the following 
form: 
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where Z0 is the wave impedance of the antenna envi-
ronment, ( )nh kr′  is the derivative from Hankel 
spherical function by the complete argument. 

Choosing the spherical coordinate system so that 
the direction θ=0 should coincide with the direction 
of radiation optimization and taking into account the 
relations  
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we come to the conclusion that only the coefficients 
a1n and b1n  from (1) – (4) determine maximum value 
of the field in the direction θ = 0. Hence, the coeffi-
cients amn and bmn with m ≠ 1 determine the energy 
transported in the directions θ ≠ 0. That’s why fur-
ther when maximizing the electric field amplitude at 
a fixed energy at the antenna input we’ll suppose that 
in (1) – (4) amn = bmn = 0 at m ≠ 1. Without loss of 
generality we can suppose as well that the field radi-
ated in the direction θ = 0 is polarized along the axis 
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x related to the spherical coordinate system, so that 
α1n = π, β1n = π/2. 

At the given requirements and stated assumptions 
the component Eθ(r,θ,φ,ω) in the plane φ = 0 is de-
scribed by the expression: 
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From physical point of view, separate terms of 
the expansion (5) can be treated as proper waves of a 
waveguide in the form of free space that satisfy the 
condition of radiation to infinities and are character-
ized by availability of a cutoff frequency that allows 
limiting the number of expansion terms taken into 
account. Thereby, the problem of rescue from physi-
cally unrealizable current distributions resulting in 
“superdirective” decisions is solved naturally. It 
should be noted that the number of accountable ex-
pansion terms is directly related to the dimensions of 
the volume occupied by the sources. And namely, 
the number of the expansion terms N providing the 
acceptable value of the antenna Q-factor should be 
summarized. This number can be chosen by three 
different ways. In case of narrow-band antennas it is 
usually supposed that N = [ω0a/c] where […] is the 
integer part of the corresponding number, ω0 is the 
central frequency of the radiated frequency spec-
trum. If an antenna radiates in a wide frequency 
band, then increase of ω should result in increase of 
N but so that appearance of a “superdirectivity” 
mode should be excluded. Such approach exactly is 
used in Ref. [2]. At the same time, calculations of the 
field in the far-field zone in the problem of diffrac-
tion at a sphere indicate to the necessity of choosing 
N = [2ω0a/c] in order to provide the 2%-accuracy. 
However, detailed analysis of results of the works [3, 
4] has shown that it is more correctly to choose N 
according to the following criterion: N = [ω0a/c+2π]. 

Let us assume that in the nonstationary excitation 
mode an antenna radiates a signal in a limited fre-
quency band characterized by the ratio 2Δω/ω0. We 
introduce a designation 
Ω = {ω: –ω0–Δω<ω<–ω0+Δω; ω0–Δω<ω<ω0+Δω}. 
Then electric field excited by this antenna in the re-
gion r > a can be written as  

1( , ,0, ) ( , ,0, )
2

j tE r t E r e dω
θ θθ θ ω ω

π Ω

= ∫ , 

where integration is made both by positive and nega-
tive frequencies. 

Full radiated energy is determined by the expres-
sion 
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where S – is the sphere surface of the radius a, n is 
the external normal to this surface. 

Using (1) – (4) and orthogonality relations for 
trigonometric functions and Legendre associated 
functions 1(cos )nP θ  and making integration by the 
surface S, we obtain 
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Let us introduce new coefficients into consideration 
1

0 1( 1)n
n nA j Z n n a+= + , 1

1( 1)n
n nB j n n b+= + . 

Then expressions (5) at θ = 0, kr → ∞ and (6) will be 
symmetric relative to the coefficients An and Bn and 
that’s why maximum ( ,0,0, )E rθ ω  will be achieved 
at the condition of An = Bn. If this condition is ful-
filled and kr → ∞, then the expression (5) takes the 
following form: 
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According to this, in the time domain we’ll obtain  
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where τ = t – r/c. 
Expression (6) for radiated energy after using 

wronskian relation for the functions ( )nh ka  and 
( )nh ka∗  is written as follows 
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Let us optimize the amplitude of the field radi-
ated in the direction θ = 0 at the time τ = 0. It is con-
venient to determine a functional for the electric field 
amplitude in the far-field zone in the direction θ = 0 
and at τ = 0 by writing (7) in the scalar product terms 
in the following way [2] 

( ,0,0,0) ([ ] ,[ ])tE r A Fθ = , 
where [A] is the column vector composed of An, [F] 
is the column vector with Fn = 1/2πr, and symbol t 
denotes transposition. The scalar product is deter-
mined as 

([ ] ,[ ]) [ ] [ ]t tA B A B dω∗

Ω

= ∫ . 

Expression for the energy (8) can be presented in the 
form of [2] 

([ ] ,[ ][ ])tW A H A= , 
where [H] is the diagonal square matrix with ele-

ments 
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, δmn is the Kronecker’s 

symbol. 
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We maximize the value of the field determined 
by the expression (7) at the given energy value W. 
This is achieved if the equation is fulfilled [5] 

( ( ,0,0,0) ) 0E r Wθ λ∇ − = . 
An optimum solution is found using the methods 

described in detail in Ref. [5]. The result is the ex-
pression for the coefficients 
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where λ is Legendre multiplier chosen so that the 
calculation by the formula (8) should result in ob-
taining the given value of W. 

The calculation algorithm for the efficient poten-
tial (product of r by Eθ) of a system is reduced to the 
following. After substituting (9) into (8) we find 
Legendre multiplier λ. As a result, the values of the 
optimum coefficients An turn out to be completely 
determined 
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Their substitution into the expression (7) results 
in the final calculation formula 
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Initially, we compare the efficient potentials 
evaluated by the formula (10) at the value of 
N = [ω0a/c+2π] that we have chosen and the value of 
N = [ω0a/c] used in Ref. [2]. Fig. 1 presents the ratio 
of the efficient potentials rE2π/rE0 for radiation with 
the frequency bands of 10% (curve 1) and 150% 
(curve 2). 
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Fig.1. Ratio of efficient potentials versus antenna 
electric dimension for radiators with the frequency 
bands of 10% (1) and 150% (2). 

 
It is seen that for electrically small antennas this 
value can exceed 10 and it tends to 1 for larger an-
tennas. Thus, application of N that we have chosen 

allows estimating the utmost values of the efficient 
potential of arbitrary antennas. 
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Fig.2. Measured efficient potential relative to the 
utmost one (1) and the sphere radius (2) versus the 
number of combined antennas in the array. 

 
It is interesting to compare antennas widely used 

for radiation of high-power ultrawideband (UWB) 
pulses by the chosen criterion. Here belong IRA [6], 
TEM [7] and combined antennas (CA) [8]. The fol-
lowing values were estimated by the information 
presented in these papers: energy and spectrum of 
radiation for IRA as well as energy and spectrum of 
voltage pulse at TEM and CA inputs. In the latter 
case, the antenna efficiency by energy was supposed 
to be equal to 100%. Frequency band was evaluated 
by the level of -10 dB, and ω0 was chosen as the av-
erage value in this band. Spectrum width for the an-
tennas under investigation was in the limits of 100–
200%. For the comparative analysis, estimation of 
rEθ = rE2π for different radiators was made and effi-
ciency coefficient values were obtained as ratios of 
the experimentally measured potential to the utmost 
one k = rEexp/rEθ. The coefficient k for IRA, TEM 
and CA equals, respectively, to 0.5, 0.35, and 0.26. 
For a 16-element array of the combined antennas 
excited from one generator [8] k = 0.58. As it fol-
lows from the results presented in Fig. 2, for a 100-
element array k = 0.75 that is by a factor of ~1.5 
higher than for IRA. Estimations show that for CA 
and CA-based arrays the ratio rEθ/V where V is the 
radiator volume is by an order of magnitude higher 
than for other radiators. 
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