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Abstract - The results of task solution of local sta-
bility of synchronous states in the system of two 
strong coupled oscillators and conditions of elabo-
ration of instabilities of different types are dis-
cussed in this report. The main feature of the 
model is the general description of wave coupling 
channel and resonance properties of the interaction 
parameter. It is demonstrated that the weakening 
of stability occurs in resonance coupling band, 
which can bring to dynamic instability. The condi-
tions of occurrence of frequency (static) instability 
and competiting modes are determined. 

1. Introduction 

The problem of controlling relativistic devices micro-
wave radiation parameters is nowadays relevant. 
One of solutions is to introduce additional (external) 
coupling channel into resonance system [1-3]. The 
investigation of the system of interconnected oscilla-
tors allowed formulating principles, which postulate 
accordance between coupling channel generalized 
characteristics and existence of one or another forms 
(modes) of coherent oscillation [4,5]. In spite of cer-
tain universality of synchronous oscillations interac-
tion power mechanism, such interactions have a wide 
range of variants in generating devices with advanced 
resonant system.  External couplings appear as real 
mutual coupling channels, whereas internal couplings 
appear through the nonlinear mechanism of electron 
bunching. Nevertheless, if the system have resonance 
features and is regenerated from the direction of joint 
poles, it can be regarded as a system of interconnected 
oscillators. In the work [6] phenomenological con-
struction of nonlinear current functions of that model 
is described. Linearization of these functions in all 
variables - amplitudes and phases of oscillation - en-
ables to consider the problem of steady-state condi-
tions local stability and to compare influence of exter-
nal an internal couplings. 

The most effective couplings with relation to sta-
bility are the resistance ones [7]; their realization sup-
poses insertion of dissipative load-elements into cou-
pling channels. However, real microwave coupling 
circuits are not wideband and have complicated  
 

frequency profile. It is shown in [4] that the interac-
tion through elementary circuits has the clearly ex-
pressed resonant character and can bring to the loss of 
stability. It should be noted that this property of co-
herent systems is universal and is not dependent with 
coupling channel electrical length. 

In this work, resonant features of the wave channel 
of mutual coupling with a dissipative non-uniformity 
(load) are analyzed and their influence on stability of 
coherent oscillation of two oscillators system is inves-
tigated in theory. 

2. Two oscillators system 

Two oscillators (Fig. 1) are coupled through circuit Y, 
which contains dissipative load-elements. 
 

 
Fig. 1. Two oscillators system. 

 
Complex admittance ( )yk jω  describes oscillators 
oscillating system features. It is supposed that due to 
their highly selective properties, the nearly harmonic 
process with the frequency 0ω  and slowly changing 
complex voltage amplitudes 

( )exp( ( )), 1, 2k k kU t j t k= ϕ =U  is developed in the 
oscillator. Circuit Y is described by conductance ma-
trix complex coefficient ( )kky jω , ( )kly jω . The 

abridged differential equation for Uk  in symbolic 
form is the following: 

( ) ( ) ( ) ( ) 0k k k kk k kl lS U Y p Y p Y p⎡ ⎤+ + + =⎣ ⎦U U ,   (1) 

where , , k k kk l p d dt S G jB≠ = = − + −  are 
the conductivities of oscillator active elements aver-
aged over the first harmonic. In accordance with the 
method of slowly changing amplitudes, the symbolic 

S1       y1(jω)                              y2(jω)       S2 
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conductivity ( )pYk  is obtained by the linear approxi-
mation of ( )ky jω  near 0ω :  

( ) ( )0 2k k kY p y j C p= ω + , 

where 
0

2 (Im ( ))k kC d y j d ω= ω ω . Parameter kC  is 
proportionate to oscillating system phase characteris-
tic steepness and analogous to oscillatory circuit ca-
pacity.  

Abridged operators ( )pYkk  и ( )pYkl  can be ob-
tained from ( )kky jω , ( )kly jω  similarly. 

3. Coupling channels resonance characteristics 

It is evident that operators ( )pYkk  and ( )pYkl  cannot 
be regarded as independent; there functional binding 
should exist, as a result of the fact that the primary 
parameters ( )kky jω , ( )kly jω  are attributed to one 
circuit. Now let us introduce this bound in the general 
form. 

Suppose that the interaction of oscillators is real-
ized through wave channel with dissipative non-
uniformity (load) (Fig. 2). 

 

 
Fig. 2. Coupling channel. 

 
In the event that the non-uniformity is thin the channel 
properties are defined by wave parameters of disper-
sion: 

( ) ( )
( )

' '
11 11 1 22 11 2

'
12 21 12

exp 2 , exp 2 ,

exp ,

S S l S S l

S S S lΣ

= − γ = − γ

= = −γ
       (2) 

where jγ = α + β , 2β = π λ , λ  is the wavelength in 
the channel; 1 2 1 2, ,l l l l lΣ+ =  define the plane of load 
location and coupling channel length. 

It is evident that coefficients '
klS  define the non-

uniformity in the plane of its location; the following 
ratio is true for them: 

' ' ' ' ' '
11 22 12 21 11 12
' '
11 12

, , 1,

.

S S S S S S
S S r

= = − = −

+ =
            (3) 

Parameter r  is non-uniformity reflectivity factor 
under in-phase of impinging waves. 

Parameters ( )kky jω , ( )kly jω  with using (2) and 
(3) were draw: 

( )

( )
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0
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y y ch l sh l sh l
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Σ Σ

⎡ ⎤
= γ γδ + γ⎢ ⎥

⎣ ⎦
⎡ ⎤

= γ + γ ± γδ⎢ ⎥
⎣ ⎦

       (4) 

where 2 1l l lδ = − , ( ) ( )0 1 1ry g r r= − +  is equivalent 
dynamic conductivity of non-uniformity, 0g – channel 
characteristic admittance; sign «–» corresponds with 
parameter 22y . Case ( )00 rr y g= =  determines of 
common load (non-uniformity) matching and total 
addition of oscillator power within it; when 

( )00 rr y g< > – the channel is overloaded; when 

( )00 rr y g> < – the channel is underloaded. Fig. 3 
shows dependencies of real and imaginary parts 

12 0y g  on channel electrical length lΣ Σθ = β  near 
2Σθ = π  for 0,0 =δ= lr  estimated on (4). Evidently, 

coupling parameter 12y  behaves in a resonance way. 
The width of resonant area 12Re 0Y <  (it is the condi-
tion of stability of cophased and similar oscillations 
[4, 7]) for symmetrical system ( )1 2l l=  contracts to a 

point if 0α→ . Introduction of asymmetry ( )1 2l l≠  
extends resonance area [4]. It should be marked that 
all parameters of quadripole possess one-order fre-
quency properties. 
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Fig. 3. Dependence of coupling parameter 12y  on 
channel electrical length ΣΘ . 
 

Thus the symmetric coupling channel possesses 
substantial resonant properties, and at the same time 
channel electrical length needn’t be large. The case 

0α →  should be regarded as theoretical limits; calcu-
lation of linear losses is necessary for coupling chan-
nel description correctness. 

In order to analyze equation (1) further lets write 
approximate expression (4) for symmetric ( 1 2l l l= = ) 
channel close to its «resonance frequency» cω  (for it 

2 , 1, 2,...m mΣθ = π = , 0ω≈ωc ): 

              l1                                   l2 
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                        (5) 

Here v  is speed of wave propagation. 
Resonance properties of coupling channel are de-

scribed in (5) by coefficients 12C  and 11C . To esti-
mate them lets write 12y  in the form of 

12 12 1 2 c
c

c

y g j Q
⎛ ⎞ω − ω

= − +⎜ ⎟ω⎝ ⎠
, 

where 12 12 2c c cQ C g= ω = π αλ . It is clear that “Q-
factor” of resonance is inversely proportional to losses 
for wave length. For microstrip line on dielectric spac-
ers (the losses within of S-band is about 

0, 2 0,5α = ÷ ) we have 300 100cQ ≈ ÷ . When evi-
dently the coupling channel on hollow waveguides 
( 0,01α < ) has very high cQ . Therefore even if the 
coupling between oscillator and external channel is 
weak one shouldn’t neglect coupling parameter reso-
nance properties. And so 11C  because of common load 
mismatching ( 0ry g≠ ) may seem insignificant. Still 
we will take in into account, because, first, it won’t 
complicate the problem, and, second, it can under cer-
tain conditions bring to instability of steady-state syn-
chronous mode. It should be underlined also that the 
coupling value 12 0 2y g l= − α  (for cω = ω ) accord-
ing to the same estimation would greatly exceed typi-
cal system conductivity of 0g . Namely this property 
underlie of given in [4, 5] the definition of  strong 
coupling. 

4. Steady-state conditions under resonance cou-
plings 

The high sensitivity of the system for parameters de-
flection of oscillator with strong resonance coupling is 
result from the form of stationary equations. Lets 
write (1) for 0p =  by using (5) and assuming for 
simplicity sake that oscillators are phased in ( 0kB = ), 
and coupling channel is matched ( )0ry g= : 

( )

( ) ( )

0 12
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G U g g
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U

U
U

. 

If case of ideal tuning ( 1 2cω = ω = ω ) equation 
have cophased solution ( 2 1 0ϕ − ϕ = ) even for 

2 1 1U U ≠ ; at the same time the greater 12g  the closer 
the amplitudes will approach. But if coupling circuit is 
detuned ( 1 2cω ≠ ω = ω ), synchronous frequency 0ω  
will be unequal to oscillator frequencies. This distinc-
tion can be substantial in case of major resonance 
properties, i.e. 12 kC C> . In this situation even a small 
frequency detuning of oscillators ( 2 1ω ≠ ω ) will 
sharply change of equation symmetry. Then the mi-
sphasing of oscillation ( 2 1 0ϕ − ϕ ≠ ) is changing am-
plitude ratio and bring to greater detuning from reso-
nances. As a result of that the systems can demon-
strate complicated behavior even within a narrow band 
of mutual frequency detuning. The typical features of 
strong coupling systems are anomalously sharp rela-
tion of synchronous frequency during oscillators pa-
rameter or coupling circuit disturbances, and also dis-
ruption of synchronism by means of oscillations sup-
pression. The concerned instability is conditioned by 
high sensibility of stationary synchronous modes of 
the system to deflections of its parameters. It can be 
stated that strong resonance coupling makes the sys-
tem less coarse. 

5. Dynamic and static instabilities 

An important element of investigating dynamic sys-
tems is instability analyze. When applying to (1) a 
standard procedure of linearization and substituting 
solution ( )* expka tδ λ , we have a system of algebraic 

equations for deflection of amplitude a∗δ  and phases 
∗δϕ  and a characteristic equation for parameter λ . 

The fullest information about system local features 
can be taken from immediate determination of roots 
for characteristic equation and corresponding vector-
solutions. They define the direction of deflaction in 
phase space, where one or another system’s couples 
are being tested. Analytical solution of the problem is 
possible for cophased ( )012 =ϕ−ϕ , equiamplitide 
( )112 =UU  stationary oscillations, when: system is 
symmetric ( )21 ll = , oscillators are identical 

( )1 2 1 2,G G G C C C= = = =  and are phased ( )0kB = , 
and coupling channel is tuned ( )cω=ω=ω=ω 210 . 
The roots are the following: 
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where 
00 0UU dG dUσ = <  is parameter, referred to 

as limiting cycle strength. 
The first root 1 0λ =  corresponds to  

monodirectional phases disturbance 
( * *

1 2 0a aδ = δ = , * *
1 2 0δϕ = δϕ ≠ ), toward which the 

system is neutral. Equal disturbance of stationary am-
plitudes ( * *

1 2 0a aδ = δ ≠ , * *
1 2 0δϕ = δϕ = ) corresponds 

to root 2λ . The constraint reaction here is excluded 
therefore parameter 12C  doesn’t belong to 2λ . Cou-
pling channel frequency features in these variations 
may appear only on its mismatch, i.e. when 0inC ≠ . 
In reality, if the channel is matched ( 0ry g= , see (5)) 
and 0inC = , we have a well-known condition of am-
plitude stability of oscillator 0σ < . The stability in 
this direction will be lost ( 2 0λ < ), if the channel is 
overloaded ( 0inC < ) and inC C> . It is important to 
mark that value inC  might be great, even for the small 
mismatching, if the channel length long enough. The 
type of root 2λ  shows that the loss of stability occur 
on changing of phase-frequency characteristic’s sign 
in the oscillation system resonance area. Given insta-
bility has hysteresis character with the elements of 
frequency pulling. Apparently, that is why it is called 
frequency or static. In the same time as root 2λ  de-
scribes system reaction on amplitude disturbance, the 
discussed inequality has the meaning of amplitude 
condition. 

Root 3λ  describes system reaction on reverse dis-
turbance of phases ( * *

1 2 0a aδ = δ = , * *
1 2 0δϕ = −δϕ ≠ ), 

therefore frequency parameter 12C  of coupling con-
ductivity ( )12y jω  belongs to 3λ . Evaluations given 
above show that cophased coherent oscillations in 
symmetric system with strong coupling might be sta-
ble only when the long attenuation in channel are sub-
stantial. The loss of stability in this direction comes 
from coherence destruction and can be referred as 
dynamic instability. The type of expression for root 

3λ  gives explanation to this instability. The positive 
sign of parameter 12C  (see (5)) corresponds with se-
ries resonance. Autooscillations on this type of reso-
nance (if it prevails: 122C C> ) may exist only for 
active elements, which have S-shaped current-voltage 
characteristics, i.e. 0σ > . 

Root 4λ  characterizes local motion in reverse dis-
turbance of amplitudes ( * *

1 2 0a aδ = −δ ≠ , 
* *
1 2 0δϕ = δϕ = ). Resonance features of coupling pa-

rameter dominate here too. Summarizing the analyze 
we should note that if coupling circuit frequency char-
acteristics will be formally neglected ( 12 , inC C C< ), 
then necessary condition of cophased oscillations sta-
bility [7] come from the obtained solutions: 

 
12 12Re ( ) 0y j gω = − < . 

6. Conclusion 

In this work, local stability of synchronous oscillations 
of two strongly coupled oscillators and conditions of 
the development of different instabilities have been 
analyzed. It has been shown that the generalized 
symmetric wave-coupling channel with a common 
load has resonant features, which are commensurable 
or exceed ones for oscillators’ oscillation systems. In 
this case, coherent regime is impossible since the os-
cillation phase difference is unstable (dynamic insta-
bility). Mismatch of common load under certain con-
ditions may lead to the hysteretic (static) instability. 
High sensitivity of amplitude-phase stationary charac-
teristics of strongly-coupled systems to the variation 
of their active and passive elements is noticed. 
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